
Transdisciplinary Journal of Engineering & Science 32

Process of Measuring the
Maintainability of Commercial
Off-the-Shelf (COTS) Based Systems:
A Complexity Approach
Smith M.1, Lawson D. W. 2, Ertas, A.3, and Surles, J.4

1 Raytheon Company, Richardson, Texas, USA, mwsmith@pobox.com
2 Texas Tech University, Civil Engineering Department, Lubbock, Texas, 79409, USA,

william.d.lawson@ttu.edu
3 Texas Tech University, Lubbock, Mechanical Engineering Department, Texas, 79409, USA,

atila.ertas@ttu.edu
4 Texas Tech University, Department of Mathematics & Statistics, Lubbock, Texas, 79409, USA,

james.surles@ttu.edu
∗ Correspondence: mwsmith@pobox.com

Received 2 January, 2020; Revised 21 February, 2020 Accepted 25 February, 2020

Available online 28 February, 2020 at www.atlas-journal.org, doi: 10.22545/2020/0132

T
his paper defines a process of predictive approach to evaluate the maintainability of a Commercial
Off-the-Shelf (COTS)-based system (CBS) by analyzing the complexity of the deployment of the
system. The approach integrates architectural dependencies and the system’s concept of operations to

derive a network-based representation of the software system. A greater understanding of the deployment
complexity is gained by using a Design Structure Matrix (DSM) to determine the number of architectural
dependencies on a COTS product, or in-degree, for each COTS product in the system. The arithmetic mean
of the in-degree for all nodes in the system is then compared with the perceived effort to maintain the system.
The resultant measure – the in-degree mean – is useful in evaluating the maintainability of the operational
system while the system is being designed and throughout its lifetime. Architects can use the approach to
assist in COTS product selection and to make product trades to optimize the maintainability of the system.
Integrators can use the approach to optimize product deployment and to determine the upgrade strategy
for deployment. Finally, maintenance engineers can use the approach to estimate the effort required to
maintain the system and to identify areas in which extensive product expertise is required. Because the
approach requires only basic information about the system, it can be applied early in the design process and
used until the system is decommissioned.

Keywords: COTS, complexity measures, system design, system maintenance, system integration.

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Smith M., Lawson D. W., Ertas, A., and Surles, J.
Process of Measuring the Maintainability of Commercial Off-the-Shelf (COTS) Based Systems: A Complexity
Approach 33

1 Introduction

This paper describes a process to evaluate the maintainability of Commercial Off-the-Shelf (COTS) based
systems (CBS) during the design and operational phases of a software development project. The approach
integrates complexity theory, graph theory, Design Structure Matrix (DSM) theory, network theory, and
systems engineering to derive a single predictive measure of the maintainability of a CBS, the in-degree
mean. The approach enables all disciplines involved in the development of a CBS to work from a single
maintainability metric to deliver a cost-effective solution.

Little evidence exists to suggest that current prediction techniques for software maintainability are
effective [1,2] for CBS. The effort associated with maintaining CBS is not generally part of the development
and costing models that are popular today; therefore, the effort to deploy and integrate these products
is rarely bid or scheduled appropriately. Instead, most existing models are focused around the effort for
software engineers to maintain glue-code or custom code, i.e., the non-commercially derived components
of a CBS. Even when costing and scheduling models account for COTS integration, they are generally
focused on the front-end of the development cycle where the effort is expended on fulfilling mission-specific
requirements. Therefore, a useful measure of maintainability is required for CBS that encompasses effort in
all phases of development.

While this problem may seem trivial, particularly in the modern design paradigm where a single
machine instance is used for a single COTS product, the complexities driven by the dependencies between
COTS products increase costs in the system development and deployment timeframes and eventually
in the maintenance timeframe. The costs in the maintenance phase of the system are often the most
significant since the engineers who are most knowledgeable about the dependencies and interactions of the
products are no longer available because they have moved on to other development efforts or because the
maintenance team is a completely separate team without reach-back to the development team. Additionally,
a traditional divide exists between the operations and development engineers, and the relationship is
often antagonistic [3]; therefore, a cultural opportunity also exists to enable the two groups to work more
closely and, together, develop a more cost-effective solution. For example, the recently popular DevOps,
or Development Operations, system delivery paradigm attempts to accomplish this pairing with software
engineers developing and delivering custom software solutions in a rapid-fire series of small incremental
deliveries [4].

Existing measures of the maintainability of CBS are focused on the number of COTS products that
are part of a system [5,6]. However, as with biological systems, it is not only the number of components
that create complexity, but instead the interactions between the components [7,8]. The measure of
maintainability described herein is a metric that is based on the interactions of the components.

In this work, the in-degree mean model - a measure of the effort required to maintain the COTS
installation - is described as well as the steps necessary to create a network-based model of the CBS. The
model is compared to the perceived effort required to maintain 13 operational CBS. The advantages of
the approach are discussed along with who can benefit from the information derived from the model. The
paper includes conclusions along with a discussion of future work.

2 Current Approaches for Measuring System Maintainability

Multiple models exist to determine the costs associated with developing systems utilizing COTS components
in combination with custom development. The BASIS technique, the COCOTS Model, the COTS Lifespan
Model (COTS-LIMO), and the Maintenance Delta are four examples. Three of these models primarily
focus on the front-end of the development lifecycle or are focused on cost measurement alone.

This section provides background on the definition of a COTS product. The development phases of a
COTS-based software system are defined in order to indicate the applicable program lifecycle phase where
each of the available models is used. Following these level-setting sections, current modeling processes are

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Transdisciplinary Journal of Engineering & Science 34

explored to understand the state-of-the-art in estimating effort associated with developing, deploying and
maintaining CBS.

2.1 Commercial Off-the-Shelf Components
COTS, as defined in the Constructive COTS (COCOTS) model, is a component that has the following
attributes [6].

• The component is sold, leased, or licensed for a fee that includes fixes for defects.

• The source code for the component is unavailable to the end user.

• The component evolves over time through periodic releases of the product (upgrades) containing fixes
and new or enhanced functionality, and

• Any given version of a COTS component will eventually reach obsolescence after which it will no
longer be supported by the vendor.

COTS-intensive systems depend on many different COTS applications to provide the business function-
ality of the overall system. No single COTS product fulfills a significant amount of the requirements [6].
Instead, many products are integrated together to fulfill the business requirements of the system. The CBS
design approach relies on glue code or custom code to ensure that COTS products communicate with each
other utilizing their documented interfaces. CBS typically deliver functionality more reliably and quickly
than custom software development approaches [9,10,11].

In CBS, the developer relinquishes control of the release cycle of the COTS product [12]. A third party
controls when bug fixes and new functionality are introduced into the product. The third party’s timelines
are rarely coordinated with the users of the COTS product. So, users either accept the functionality as
is or find other ways to fulfill the business logic that are not provided with the COTS products that are
part of the system. Usually this entails creating custom code to provide missing functionality or to work
around a bug in the COTS product. Sometimes, to work around a bug in a COTS product, it is necessary
to change the way the system is used until a bug fix is released by the vendor. Similarly, a new version of a
COTS product may change the functionality of an interface while introducing a fix to a bug (related to the
interface or not). The developer may need the bug fix, but the change in an interface may cause rework
in the custom code around the COTS product. Since the CBS developer does not control what is in the
release from the COTS vendor and what is not, the COTS vendor has the potential to cause rework simply
by the way a new release is bundled.

For CBS, the developer can no longer fully coordinate every aspect of the system delivery [13,14] and
may have to deal with dependencies that complicate the system deployment without adding value to the
system’s functionality. These problems are amplified when products from multiple COTS vendors are
deployed in the system and incompatibilities between the architectural requirements of the vendors cause
conflicts in the deployment of the system [15]. For example, if one product requires Java version 1.5 and
another requires Java 1.6 to operate correctly then the overall system must have two different versions of
Java installed for both of these products to function correctly. Having two versions of a product in the
same system results in complexity around configuration management, deployment and integration of the
entire CBS.

In today’s large government system architectures, it is typical to have more than 50 COTS products [16,6]
and not unusual to have more than 100 COTS products in the final CBS architecture. The architectural
dependencies between these products, that is, dependencies on specific product versions, libraries or common
variables, complicate the initial deployment, the integration and the on-going maintenance of the system
once the system transitions into operations. Often, because of the COTS delivery cycle, the use of COTS
products increases the rate of change in a system versus a custom-developed solution [17]. COTS products
also increase the risk of change in a production system and contribute to complexity in replacement or
upgrade attempts with a resulting failure percentage as high as 70% [18]. The complications associated
with the rate of change increase the costs associated with maintaining the CBS, have the potential to strain

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Smith M., Lawson D. W., Ertas, A., and Surles, J.
Process of Measuring the Maintainability of Commercial Off-the-Shelf (COTS) Based Systems: A Complexity
Approach 35

Figure 1: CBS development cycle process (modified from [1]).

the schedule and costs associated with integrating and maintaining the CBS, and have the potential to
cause a complete project failure if not accurately estimated and understood.

The problem of maintaining the COTS deployment is not one that is relegated to the O&M phase of
the system lifecycle. A typical COTS vendor releases a new version of its product every eight to nine
months, and only supports the last three releases of the product [19]. This means that a COTS product
may only be supported for 27 months once it is configured into the system unless steps are taken to install
an updated version of the product. Changes associated with the product update cycle are in addition
to changes introduced by vendor’s patch releases that fix bugs. Patch releases only increase the number
of changes in the configuration. Today’s large system development cycles are often multiple years long
with many large systems taking longer than five years to develop [6]. The comparatively brief update
cycle of individual COTS products suggests that many products will require updates before the system
leaves the development phase of the system lifecycle. And, more importantly, because of this rapid update
cycle, a plan to upgrade COTS components in the architecture must be part of a sustainable O&M plan.
The vendor upgrade cycle and the need to keep the delivered system in a supported configuration with
each individual vendor makes it necessary to consider and understand the architectural interactions of
COTS products in the earliest phases of the system design to ensure that the system is maintainable for its
planned lifecycle. Additionally, interoperability issues have the potential to paralyze the development of
the project if they are not understood and incorporated into the applications requirements [20], so it is
helpful to understand these complexities introduced by COTS dependencies early in the project and track
them through the project’s entire lifecycle.

2.2 Software Development Lifecycle
Several of the existing maintainability metrics for CBS are based on complex measurements of COTS
interfaces. Others are based on subjective analysis of the COTS product and how easy it is to use in a
development environment. These measures are appropriate for the front-end of the product development
lifecycle where software developers are designing and interacting with the products. However, because
the maintenance phase of a project is significantly more expensive than the development phase [21],
measurements are needed that account for maintainability in the planning, installation, and operations and
maintenance phases. Figure 1 highlights the areas of a typical development cycle where maintainability
efforts have the most impact on effort for CBS.

2.3 Measuring the Cost of COTS System Developments
2.3.1 The BASIS Technique [22]

The Base Application Software Integration System (BASIS) technique is an integration approach that assists
in selecting COTS products and defining the order in which COTS applications should be incorporated into

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Transdisciplinary Journal of Engineering & Science 36

the delivered system [22]. The technique is used in the first stage of project development - the planning
stage - to determine which COTS products introduce the most risk into the system design. Once these
products are identified, they are integrated into the system starting with the most complex and progressing
to the least complex. An iterative integration process is proposed in the technique implying a spiral
development process. The BASIS technique is a small part of the Phase-Integrated COTS (PIC) approach
for the entire software development lifecycle. The model considers COTS a portion of the custom software
development cycle.

The BASIS technique is used at the start of the design process and is used to select the best COTS
candidates to fulfill the requirements of a project. There are three basic evaluation steps to the BASIS
approach [22] – (1) how each COTS product fulfills system requirements, (2) the provider’s viability and
(3) the complexity of the product’s external interfaces for integrating with the custom code. The BASIS
technique requires extensive knowledge of the COTS products being evaluated. While there is an effort in
the technique to account for the order in which COTS products should be integrated into a system, the focus
of effort is to minimize the development risk of the project. Specifically, the BASIS technique minimizes
the risk associated with developing and integrating custom code and estimating the effort associated with
custom code development instead of the effort to maintain the overall COTS installation for the CBS.

The BASIS technique differs from the in-degree mean method proposed herein in that the in-degree
mean requires less intimate knowledge of the interfaces associated with each COTS product. Further,
the in-degree mean enables the architect to consider the maintenance phase of the program during the
design process instead of simply choosing products that are favorable in the development phase. Instead of
requiring knowledge of each external interface, the in-degree mean method requires only the installation
requirements and the architectural requirements.

2.3.2 COCOTS Cost Model [3]

The Constructive COTS Integration cost model (COCOTS) is a cost estimating tool that recognizes that
COTS integration has become a significant portion of modern computing systems. The model attempts to
account for the integration of COTS components in the cost estimation of the system design.

COCOTS accounts for four initial integration costs associated with the effort to perform (1) assessment
- candidate COTS component assessment, (2) tailoring – work required to configure and integrate the
COTS component into the system under development, (3) glue code - the development and testing of
any custom integration code needed to plug a COTS component into a larger system, and (4) volatility –
the increased system level programming and testing due to volatility in incorporating COTS components.
The model accounts for testing in each of the phases. By design, it is focused on the front-end of the
development process. The COCOTS model, and its extensions, is used as a software-costing tool; therefore,
it is primarily used in the system design and development phases of a program. However, the COCOTS
model is being expanded to include maintenance costs in the future [9].

In the assessment process, the COCOTS model defines rating criteria for determining the integration
complexity of each COTS product. The rating is subjective and gives a point rating for the complexity
associated with a product in each of the following areas: parameter specification, script writing, I/O Report
Layout, GUI screen specification, Security / Access protocol initialization and setup, and availability of
COTS tailoring tools. The complexity scores for each of the COTS products in a system are combined
to determine an overall complexity rating for a project. The model requires an engineer to be familiar
with the development interfaces of the COTS product. The knowledge associated with the development
interfaces is often gained through years of experience with the product.

The COCOTS model is different from the in-degree mean process because it is estimating the effort asso-
ciated with development instead of the costs associated with the deployment, integration and maintenance
of COTS products. The complexity ratings and integration approaches associated with the in-degree mean
assist the costing of the integration effort in a similar way as the COCOTS model assists the development
team in determining costs and schedules. The two models are focused on different ends of the program
lifecycle as shown in Figure 1. As with the BASIS technique, the COCOTS model requires knowledge

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Smith M., Lawson D. W., Ertas, A., and Surles, J.
Process of Measuring the Maintainability of Commercial Off-the-Shelf (COTS) Based Systems: A Complexity
Approach 37

of the development interfaces of each COTS product whereas the in-degree mean process only requires
information from the COTS installation manuals and the system CONOPS.

2.3.3 COTS-LIMO [1]

There is a widespread belief in the COTS integration community that the number of COTS components in
a CBS has a strong impact on the maintainability of a system. Each COTS product in the system requires
unique knowledge to support the integration and maintenance effort. Additional costs are associated with
tracking COTS product upgrade roadmaps and licensing costs as well as the support effort required to
interface with the vendor to report bugs as they are identified in the CBS. And, the independent release
schedule of each COTS product in the system creates a maintenance tail to simply track the compatibility
between COTS product versions.

Because of the additional costs associated with CBS, the COTS Lifespan Model (COTS-LIMO) model
attempts to identify a break-even point where maintenance costs increase disproportionately to the number
of COTS products in a system. According to the model, the break-even point exists regardless of the
efficiencies gained. This point is called the maintenance equilibrium. The COTS-LIMO model presumes
that it is possible to determine the number of components that exceed this maintenance equilibrium. The
COTS-LIMO model acknowledges that the costs associated with maintaining a single COTS component
decrease over time as the maintenance staff becomes more familiar with the product. But, even with these
efficiencies, the complexity of maintaining multiple COTS products in a single system reaches a point
where the costs associated with tracking and maintaining the COTS components exceed those efficiencies
gained [5,23] by using COTS products instead of custom-developed components.

The COTS-LIMO is intuitive. As more products are added to a CBS, the maintainer of the system
reasonably expects that effort to maintain the system will increase. However, the COTS-LIMO model has
one significant drawback; namely, that no process or method currently exists to determine the appropriate
number of COTS components that exceeds the maintenance equilibrium for a given CBS design. The
model falls short in practical application because it is not possible to determine when there are too many
COTS products in a CBS. So, it is not possible to make architectural decisions about whether to fulfill a
system requirement with a COTS product or custom development.

2.3.4 Maintenance Delta [24]

The theory of the Maintenance Delta asserts that the Power-Law distribution is a standard for the number
of architectural interactions in a system and, therefore, represents an ideal on which the maintainability of
real-world systems can be measured.

In network theory, scale-free networks hold a unique position in that they have been found to describe
many large networks. This holds true for both naturally occurring networks (cellular metabolism) and for
man-made networks (learning networks, the Internet, etc.) [25,26]. The scale-free network is a network
where the degree distribution of the nodes follows the power-law distribution [27] – a probability distribution,
pk, of degree k with the form

pk = Ck−α (1)

for integer values of k where kmin > 0, where C is a normalization constant, and α is a constant parameter
of the distribution known as the exponent or scaling parameter. α typically lies in the range 2 < α < 3
[28]. The number of nodes in each dependency group differs with the size of the network; therefore, the
scale-free model is intended to accommodate networks of various sizes.

The maintenance delta is the numerical difference between the distribution of a CBS and a power-law
distribution of similar size. A CBS with a distribution that is below, or less than the power law distribution,
would have a negative maintenance delta indicating that the level of effort to maintain the system is less
than normal. A CBS with a distribution that lies above, or has more interactions than a similarly sized

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Transdisciplinary Journal of Engineering & Science 38

scale-free network, has a positive maintenance delta and, thus, requires more effort than normal to maintain
the COTS installation.

The maintenance delta is intended to be a comparative measure of the maintainability of two systems.
By deriving the maintenance deltas of the two competing architectures and comparing the results, it is
possible to make design decisions based on the maintainability of the overall solution. The maintenance delta
and the in-degree mean process both explore maintainability for the O&M phase of the CBS development
lifecycle.

3 Maintainability and Complexity of CBS
Like software maintainability, COTS maintainability is based on complexity; therefore, maintainability
should be accounted for by the interactions between the components. A process for measuring the
maintainability that combines the unique qualities of a COTS-based system along with the interactions
between those products is needed for CBS to appropriately measure their maintainability. The concept
of maintainability is focused on the operations and maintenance phase of the program and focused on
the maintainers of the system, not the consumer of the system’s functionality. The focus on the O&M
phase is distinctly different than software models where most effort is focused on the development phase of
the program (see Figure 1). Similarly, other software models focus on the effort for software engineers to
maintain the custom code, including glue ware, of the system instead of the effort required to maintain the
components for which there is little visibility into the internal structures of the software and little influence
on the delivery roadmap [29,16]. For these reasons, a CBS maintainability measure should focus on the
interactions between the components and the effort associated with changing the components and the effort
required by maintenance engineers to upgrade and maintain these components.

The in-degree mean model presented herein complements the existing models by filling a gap in the
available models. By covering the aspects of system deployment, the integration effort associated with that
deployment, and the maintenance effort in the Operational and Maintenance (O&M) phases, the model
adds a more detailed investigation of an area of the CBS lifecycle that has been overlooked in other models.

3.1 Process of System Maintainability
The maintainability of CBS is defined by how much effort is expended in the various phases of the program;
however, as the O&M phase is typically the longest in the program lifecycle, the effort associated with this
phase has the highest impact on the maintainability of the system. Maintainable systems minimize the
effort required to achieve five maintenance activities associated with COTS-based systems [14]

1. Product reconfiguration

2. Testing and debugging

3. System monitoring

4. Enhancing user-level functionality

5. Configuration management

Table 1 shows these five maintenance activities along with a description of common general activities
that comprise each category. Product reconfiguration is the replacement of given product with an upgrade
to the same product or replacement with another product that performs a capable functionality. The
other attributes of the systems that require effort – testing and debugging; system monitoring; enhancing
user level functionality; and configuration management - are somewhat self-explanatory. Other factors
influence the cost of maintaining COTS-intensive systems [6]. However, each of the influencing factors can
be categorized into one of the five identified maintenance activities.

Extensive research has been done on complexity and on measuring complexity of software development
[30,31,32,33,34]. Much of this research, particularly around component based software development, is

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Smith M., Lawson D. W., Ertas, A., and Surles, J.
Process of Measuring the Maintainability of Commercial Off-the-Shelf (COTS) Based Systems: A Complexity
Approach 39

.

pertinent to this work. With component-based software development, the interaction between components
becomes the focus for creating maintainable solutions instead of the internal workings of each individual
component [35]. However, this present study aims to be complimentary to these models for custom
software development and cover an area of maintenance that is not typically included – that associated
with maintaining the COTS products.

3.2 Complexity

3.2.1 Identifying Dependencies

In a large system, the individual products combine to deliver the system’s defined functionality; however,
to deliver the functionality, the components must be integrated into a single system. Each COTS product
requires additional components and characteristics to function as desired in the system. These requirements
are defined as COTS dependency attributes [36] and include such items as the need for a specific version of
another COTS product or the definition of an environment variable in the system where the product is
installed. Behavioral dependencies - the interaction between the two components that may only be certified
for specific versions of the two products [14] - are included in COTS dependency attributes.

Architectural mismatch is another similar area of study that has received much attention in the literature
[37]. As with the COTS integration effort [38,12,15], the architectural mismatch research has focused on
the front-end development of programs. This research has generally focused on the interfaces between

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Transdisciplinary Journal of Engineering & Science 40

COTS products, the interfaces that are used by software developers to interact with the COTS products,
and the software architecture in which the components are functioning. A fourth area, assumptions about
the construction process, is closely linked to dependency attributes in that it recognizes that software
components (including COTS components) have underlying assumptions about the order in which the
system is built or about previously existing capabilities that must be in place for the components to
function correctly. However, as the proliferation of COTS products increases in computing architectures,
the architectural mismatches caused by requirements from disparate COTS products is an area that has
not been covered by previous research.

Architectural dependencies and dependency attributes are traditionally acknowledged as creating
interactions in a CBS. But, architects also create interactions in the CBS by choosing which products
fulfill specific requirements and by defining the system’s concept of operations (CONOPS). These two
types of interactions contribute to complexity in testing and debugging the system by creating additional
interactions within the system [39]. For instance, if a single product is chosen to fulfill five different
functional requirements in the system, changing that product requires more functional testing than if the
product only fulfilled a single functional requirement.

The concept of operations creates interactions by introducing interactions between components that
are not necessarily intended by the vendor [24]. One COTS product may not require another to install
and operate, but the two may be required to interact and provide the required functionality of the system.
This interaction is not covered by the architectural or behavioral dependencies and is, therefore, missing
from the current models that are in use. Combined, architectural dependencies, COTS dependency
attributes, architectural mismatch, and the system’s concept of operations create a more complete view of
the architectural interactions in the CBS.

Architectural interactions themselves create complexity in the CBS that must be managed. And, because
each COTS product vendor follows its own independent development and upgrade schedule, the innate
complexity in a CBS is worsened by the need to upgrade individual components on their own individual
time scales to remain in a supported configuration. The time-dependent combinatorial complexity created
by multiple independent upgrade paths must be eliminated from the system in order for the maintenance
lifecycle of the system to be successful and avoid degenerating into a chaotic state [40]. This emergent
behavior is one of the aspects of a complex system [8,40,41] and must be anticipated and understood in the
design phase of the CBS in order to achieve the appropriate maintenance equilibrium of the system in the
deployment and maintenance phases. Without appropriate sustainment, the system has the potential to
devolve into disorder [42]

3.3 Complexity
3.3.1 Identifying Dependencies

In a large system, the individual products combine to deliver the system’s defined functionality; however,
to deliver the functionality, the components must be integrated into a single system. Each COTS product
requires additional components and characteristics to function as desired in the system. These requirements
are defined as COTS dependency attributes [36] and include such items as the need for a specific version of
another COTS product or the definition of an environment variable in the system where the product is
installed. Behavioral dependencies - the interaction between the two components that may only be certified
for specific versions of the two products [14] - are included in COTS dependency attributes.

Architectural mismatch is another similar area of study that has received much attention in the literature
[37]. As with the COTS integration effort [38,12,15], the architectural mismatch research has focused on
the front-end development of programs. This research has generally focused on the interfaces between
COTS products, the interfaces that are used by software developers to interact with the COTS products,
and the software architecture in which the components are functioning. A fourth area, assumptions about
the construction process, is closely linked to dependency attributes in that it recognizes that software
components (including COTS components) have underlying assumptions about the order in which the
system is built or about previously existing capabilities that must be in place for the components to

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Smith M., Lawson D. W., Ertas, A., and Surles, J.
Process of Measuring the Maintainability of Commercial Off-the-Shelf (COTS) Based Systems: A Complexity
Approach 41

function correctly. However, as the proliferation of COTS products increases in computing architectures,
the architectural mismatches caused by requirements from disparate COTS products is an area that has
not been covered by previous research.

Architectural dependencies and dependency attributes are traditionally acknowledged as creating
interactions in a CBS. But, architects also create interactions in the CBS by choosing which products
fulfill specific requirements and by defining the system’s concept of operations (CONOPS). These two
types of interactions contribute to complexity in testing and debugging the system by creating additional
interactions within the system [39]. For instance, if a single product is chosen to fulfill five different
functional requirements in the system, changing that product requires more functional testing than if the
product only fulfilled a single functional requirement.

The concept of operations creates interactions by introducing interactions between components that
are not necessarily intended by the vendor [24]. One COTS product may not require another to install
and operate, but the two may be required to interact and provide the required functionality of the system.
This interaction is not covered by the architectural or behavioral dependencies and is, therefore, missing
from the current models that are in use. Combined, architectural dependencies, COTS dependency
attributes, architectural mismatch, and the system’s concept of operations create a more complete view of
the architectural interactions in the CBS.

Architectural interactions themselves create complexity in the CBS that must be managed. And, because
each COTS product vendor follows its own independent development and upgrade schedule, the innate
complexity in a CBS is worsened by the need to upgrade individual components on their own individual
time scales to remain in a supported configuration. The time-dependent combinatorial complexity created
by multiple independent upgrade paths must be eliminated from the system in order for the maintenance
lifecycle of the system to be successful and avoid degenerating into a chaotic state [40]. This emergent
behavior is one of the aspects of a complex system [8,40,41] and must be anticipated and understood in the
design phase of the CBS in order to achieve the appropriate maintenance equilibrium of the system in the
deployment and maintenance phases. Without appropriate sustainment, the system has the potential to
devolve into disorder [42].

3.3.2 Mapping Dependencies

The Design Structure Matrix (DSM) has been in use for decades to show dependencies between tasks in
design and manufacturing of large engineering systems [43]. The DSM has proven to be a valuable tool
in understanding and managing complexity in sophisticated design projects in the automotive and other
industries. Recently, the DSM has been used to create the foundation of a network to study the task
interactions in a product development process [44] and modularity in software development [45]. Based on
this work, it is straightforward to leverage the DSM tool to map the architectural interactions and assist in
managing the complexity associated with maintaining a CBS.

Figure 2 shows an example DSM. The numbers along the top and side of the DSM represent COTS
products in the system – a total of 13 in this case. Each product is listed in the same order on both sides
of the DSM resulting a square matrix. A mark in the square where two products intersect indicates a
dependency that the COTS product in the row has on the COTS product designated in the column. For
example, in Figure 2 product 1 is dependent on itself and product 12. Similarly, product 3 is dependent on
products 1, 4, 5, 6, 7, 8, 9, 10 and itself. Product 2 is unusual in this DSM because the only dependency it
has is on itself. This relationship is directed. It may or may not be true that the product in the column
has a dependency on the product in the row. For this reason, the DSM is not symmetrical once it is fully
populated. Each product has a dependence on itself; therefore, the diagonal is fully populated in the DSM.
Looking at Figure 2, the row for COTS product [1] shows the dependency that the product has on itself in
column [1] and another dependency on the COTS product in column [12].

In CBS, DSMs assist in scheduling decisions and identify architectural dependencies. They also provide
a visual representation of the system. It is sometimes convenient to transform the DSM into a network
or graph where the system can be analyzed using graph theory [45]. When the DSM is converted to a

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Transdisciplinary Journal of Engineering & Science 42

 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

[1] ! !

[2] !

[3] ! ! ! ! ! ! ! ! !

[4] ! ! ! ! ! ! ! ! !

[5] ! ! ! !

[6] ! ! ! !

[7] ! ! ! !

[8] ! ! ! ! ! !

[9] ! ! ! ! ! !

[10] ! ! ! ! ! !

[11] ! !

[12] ! !

[13] ! ! ! !

of dependencies
(in-degree) 2 9 8 8 3 3 3 5 5 5 3 4 1

Figure 2: DSM showing interactions between COTS products and the in-degree for each product.

network, each connection other than the link the COTS product has to itself is a link to another node in
the network.

Graph theory is used frequently in computer science and system design to represent software and
architectural designs, computer networks, and even the Internet [46,47]. Graph theory is a useful mechanism
to study networks as it offers a common language to label and represent the network as well as mathematical
notions and operations with which network properties can be quantified and measured. The graph, or
network, consists of nodes and connections between the nodes. Degree, degree sequence, and degree
distribution are three of the common graph theory attributes that give information about the network [48].
Because directed graphs give information about the relationships between two nodes that is not available in
undirected graphs, directed graphs present a more accurate representation of the structure of the network
[49,50]. In a directed graph, in-degree refers to the links coming into a node, and out-degree refers to the
number of links coming out of a node. In the DSM for CBS, the in-degree refers to the dependencies that
other COTS components have on a node. Out-degree refers to the dependencies that a node has on other
COTS components.

3.3.3 Measuring Complexity and Maintenance Effort

Looking at Figure 2 again, the in-degree for each COTS product in the system is obtained by simply
summing the number of entries in each of column where each column represents a single COTS product.
The in-degree is the number of products that depend on the COTS product identified by the column in the
DSM. Therefore, some products have an in-degree of 1 because no other products depend on that product
to provide functionality in the system. Conversely, each product depends on an operating system, so the
operating system column has multiple in-degree dependencies. Figure 2 identifies the in-degree for each
COTS product, computed and shown at the bottom of each column.

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Smith M., Lawson D. W., Ertas, A., and Surles, J.
Process of Measuring the Maintainability of Commercial Off-the-Shelf (COTS) Based Systems: A Complexity
Approach 43

The arithmetic mean of the in-degree of the nodes, or average in-degree, is a characteristic of the
network. The average, shown in (2), defines the in-degree mean. The mean (average) in-degree, c, in a
directed graph is

c =
1

n

n∑
i=1

ki (2)

where the in-degree of node i is denoted by ki and n is the number of nodes in the network [51]. The
arithmetic average is straightforward to calculate and it incorporates the contribution from every node
in the network; however, strong outliers may heavily influence the average [52]. Components with many
connections require significant effort to test and maintain compatibility with all of the other products
with which they interact. Also, in dynamic networks where nodes are continuously being added (e.g.,
the Internet), the average degree of the network appears to be increasing [53]. In the case of CBS, the
architecture of the system is static, so the average degree is constant for each network under evaluation.

4 Measuring Complexity and Maintainability
The in-degree mean model is proposed as a predictive measure of the effort required to maintain a CBS
through the O&M phase of the CBS development cycle. To empirically assess the model, data for CBS
were gathered from multiple sources [54].

4.1 Sample Population
The population of systems available for assessment with the model included CBS from one large company
(> 10,000 employees), two medium sized companies (> 100 employees and < 10,000 employees) and one
small company (< 100 employees). Projects selected for this study were not required to satisfy criteria
other than their sponsor’s willingness to participate. Therefore, nothing was known up-front about the
number of COTS products in each system or the effort required to maintain each system. Using multiple
data sources strengthens the study by eliminating engineering design bias introduced by standardization
in an organization [55]. A request for participation was sent to program managers and leaders from each
of these organizations. During introductory conversations, each organization provided an approximate
number of systems on which they would provide information. 53 responses were expected; however, only 17
responses were received.

While 17 represents a significant reduction from the expected 53 systems, each organization experienced
unique challenges in providing the details of the systems they had architected and delivered. Some
sources were concerned about program security and releasing company-sensitive information and were
unable to provide the requested information. Others suffered from staff shortages and were not able to
provide the information because of timeline constraints from other deadlines. One company outsourced the
entire Information Technology (IT) department and did not retain the expertise required to provide the
information about their systems.

From the 17 responses, three were eliminated during the evaluation period because the systems were
cancelled before entering the O&M phase of the program or because the supporting personnel were not
available to participate in the questionnaire. One system was eliminated because two different contractors
developed and maintained the system. This system is different because in all the other systems in the
response set, the same contractor developed and maintained the CBS. Instead of introducing another
independent variable associated with the separation of the development and maintenance contracts, the
system was excluded. An item was added to the future work (Section 7.4) relative to adapting the model
to address cases where the developer and maintainer of the CBS are different.

After these exclusions, the model was tested with a sample size of 13 systems. All of the evaluated
systems except one were in the operational stage of the lifecycle. The one remaining system was being
decommissioned; therefore, it had already been through its operational lifecycle. The final sample set

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Transdisciplinary Journal of Engineering & Science 44

Figure 3: Number of COTS products in each system in the sample set.

ranged from ten to 59 COTS products (see Figure 3) representing systems from small to large numbers of
COTS products [6].

The sample size is larger or similarly sized to other published studies related to CBS maintainability.
For instance, in IEEE, only four published empirical studies were identified, these having two [56], five [16],
eight [48] and thirteen [13] systems surveyed.

The following sections explain how the dependencies for the 13 systems in this study were derived (a
measure of complexity) and how effort to maintain these systems was evaluated (a measure of maintain-
ability).

4.2 Identify Complexity in CBS

To establish architectural interactions in the subject CBS, a request was sent to system architects and
program engineers asking for a list of COTS components in the system for which they were responsible. A
follow-up interview to understand the CONOPS associated with the system and to identify any additional
dependencies was also requested as part of the initial contact with the system subject matter expert (SME).
This part of the process was challenging for some of the programs because of concerns with revealing
sensitive program information or because knowledgeable personnel were no longer available. This suggests
that for operational programs, the information required to create the in-degree mean model may be difficult
to obtain. However, for systems under development, knowledgeable personnel should be readily available
for determining the information required for the model.

For most of the projects, the follow-on interview lasted less than one hour. Architectural data flows
were helpful in ensuring that all dependencies were identified and to refresh the program SME on project
functionality that was used less frequently.

4.2.1 Dependencies in Existing Documentation

After receiving the COTS list from the program representative, COTS installation dependencies were
identified by reading the vendor documentation for each of the products in the CBS. Many installation and
configuration dependencies are recognized in literature [57,14] and are straightforward to define. With
this process, the mapping of installation and configuration dependencies relied on the accuracy of vendor
documentation to ensure that it was complete and up-to-date.

The availability and quality of vendor documentation varied significantly as there is no standardization in

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Smith M., Lawson D. W., Ertas, A., and Surles, J.
Process of Measuring the Maintainability of Commercial Off-the-Shelf (COTS) Based Systems: A Complexity
Approach 45

Figure 4: Example installation prerequisites for Hummingbird Exceed (COTS product) [47].

installation guides for COTS software [58]. When COTS vendors document their installation dependencies,
this takes many forms. The installation guide is the most common place where vendors document installation
prerequisites. Figure 4 shows how one COTS product, Hummingbird’s Exceed – a COTS application
that lets the user access Linux or UNIX applications from a Windows-based workstation – documents its
dependencies on the operating system and on the Java Runtime Environment.

Hummingbird’s Exceed notes dependencies in at least two ways. First, depending on the product used
in the system (four different products are covered in the embedded table), the operating system is noted in
the second column of table and additional requirements are noted in the fourth column. Because multiple
operating systems are supported, it is necessary to know the baseline operating systems, including versions,
used in the system under evaluation. Once the operating system is known, a dependency is noted in the

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Transdisciplinary Journal of Engineering & Science 46

DSM at the intersection of the row for Exceed and the column for the operation system. The same process
is used to document the dependency on TCP/IP and Microsoft C/C++ (from the fourth column in the
embedded table in Figure 4) in the DSM. Additional third party dependencies are noted depending on how
the product is to be used in the system.

The “Third Party Software” portion of Figure 4 indicates another dependency on the Java Runtime
Environment (JRE). This dependency is written out instead of included in the embedded table; however,
the dependency must still be captured in the DSM. It is important to recognize that vendors document
installation dependencies in multiple ways even within a single vendor’s documentation.

For the CBS in the dataset, determining the dependencies took about one hour per product. The vendor
documentation that lists the installation dependencies must be located. The Internet is a valuable resource
for these documents as most vendors make their documents publically available. Once the appropriate
manual is located, the installation dependencies are relatively easy to find in the manual. They are generally
called out in the Table of Contents or found with keyword searches. Most vendors make installation
dependencies clear even when the product installation is dependent upon another company’s product. For
instance, many products are dependent on a database for storing information. In these cases, the vendor is
clear on which vendor’s databases are supported along with the required versions of those databases.

Many products are commonly used across projects. For instance, Internet Explorer and the Oracle
database are typical components in many systems. The commonality of these components accelerated some
of the investigation of dependencies but only when the same versions of the components were used between
systems. When different versions were used, it was not possible to leverage previous work because of the
potential mismatch of the versions of dependencies.

4.2.2 Dependencies from the CONOPS

In addition to dependencies introduced by the COTS products themselves, CBS also include dependencies
derived from the system CONOPS. Combined, these are called architectural interactions. The dependencies
from system CONOPS were derived during an interview with the system architect or other SME who
was knowledgeable of the overall design principles and concepts of the system. During the interview, the
architect identified dependencies that were introduced by the system data flows or system design. Such
dependencies are sometimes related to the way application workflow states are preserved or to concepts
related to application fault tolerance and failure recovery. Similarly, in many systems, the database is used
to preserve processing state information for web applications. It is possible that no vendor’s installation
guide recognizes this dependency; however, for the system to function as the architect has designed, the
dependency between the products must be recognized and maintained throughout the lifecycle of the
system. In the DSM, these dependencies are noted with a mark on the web application row in the column
for the database. Dependencies derived from the CONOPS are unique to the design of the CBS; therefore,
they can only be determined by the architect and will not be documented in the vendor requirements for
each individual product.

The process of documenting dependencies between COTS products (whether installation or CONOPS)
continued until all of the known dependencies were identified with a mark in the DSM. The diagonal of DSM
is always marked as the dependency that each product has on itself. Once complete, the DSM documents
all of the architectural interactions of the CBS and becomes the basis of the model for determining the
maintainability of the CBS.

Because there is some ambiguity in the dependencies that are known at the beginning of a project, the
DSM is a living model of the system. As new dependencies are introduced or knowledge of the existing
dependencies matures, the DSM is updated to increase the fidelity of the model.

4.3 Real-World Assessment of Effort – the Survey Questionnaire

In order to validate the accuracy of the in-degree model of maintainability is it necessary to compare the
measure against the effort required to maintain actual deployed systems. Ideally, the effort associated with

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Smith M., Lawson D. W., Ertas, A., and Surles, J.
Process of Measuring the Maintainability of Commercial Off-the-Shelf (COTS) Based Systems: A Complexity
Approach 47

integrating and maintaining the COTS products in a system would be captured by some direct means
such as charge numbers, billing information, etc.; however, in surveying commercial companies, academia,
and government organizations, none of the organizations kept billing metrics at the granularity needed
to isolate the maintenance effort associated with only the COTS solution. Therefore, a survey of system
architects was determined to be the best means to determine the perceived effort required to maintain each
COTS based system. While not as accurate as direct measurement based on billing information, perceived
effort gives a notional measure of the effort to maintain a CBS.

The construction, execution, and evaluation of the survey questionnaire was accomplished through
several steps.

4.3.1 Constructing the Questionnaire

1. Closed ended questions

2. Clear items

3. Only single questions (no double-barreled questions)

4. Only relevant questions

5. No negative questions

6. Non-biased items and terms

7. Short answers (when possible)

All survey items were created to evaluate the perceived effort associated with maintaining the COTS
components of a CBS as defined in previous research [14]. As there are five major areas that contribute to
the effort – Product Reconfiguration; Testing and Debugging; System Monitoring; Enhancing User-Level
Functionality; and Configuration Management - the questionnaire was organized with five major question
groups corresponding to each area of effort. Within each major question group, a single survey item
addressed each of the individual maintenance activities. Combined, these items comprise a measure of
the perceived effort associated with each major category. A sample section of the survey questionnaire is
shown in below.

Your role on the project: (e.g., architect, COTS manager, etc.)
Current phase of project: (e.g., development, production, integration, etc)
How long has the project been in this phase? (years or months)

Estimate the effort associated with activity as it relates to the COTS (Commercial Off-the-Shelf Products)
in the architecture. If the program or project has not experienced the described type of COTS product
change, please mark N/A instead of estimating the effort.

Product Reconfiguration

1. Updating COTS products with new versions. i.e., updating Oracle 10.1 to 11.0, or Internet Explorer
from version 7 to 8.
Effort (from 1-10, or N/A)

2. Replacing a COTS product with a competitor’s offering. i.e., replacing DB2 with Oracle.
Effort (from 1-10, or N/A)

3. Adding or removing COTS products from the architecture as requirements evolve.
Effort (from 1-10, or N/A)

Testing and Debugging

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Transdisciplinary Journal of Engineering & Science 48

1. Identifying causes of failure in the system. i.e., isolating the fault to a COTS product and logging
the case with the vendor.
Effort (from 1-10, or N/A)

2. Running tests to validate requirements and verify changes in configurations. i.e., effort associated
with testing requirements fulfilled by COTS products.
Effort (from 1-10, or N/A)

3. Monitoring system performance and resource utilization of COTS products. i.e., validating system
performance requirements and resource utilization of COTS products.
Effort (from 1-10, or N/A)

4. Analyzing logs associated with COTS products to determine system behavior and activity. i.e.,
utilizing COTS logs to debug or determine system functionality.
Effort (from 1-10, or N/A)

System Monitoring

1. Logging system behavior. i.e., the effort associated with finding logs associated with COTS products.
Effort (from 1-10, or N/A)

2. Analyzing logs for failures, performance problems, etc. i.e., the effort associated with determining
information about a particular COTS product’s failure and performance based on the logging provided
by the vendor.
Effort (from 1-10, or N/A)

Enhancing User-Level Functionality

1. Changing system functionality as requirements evolve utilizing the current COTS in the system. i.e.,
delivering additional or different system requirements with the COTS products that are already part
of the system.
Effort (from 1-10, or N/A)

Configuration Management

1. Effort associated with tracking the available versions of COTS products. i.e., effort associated with
determining when newer versions of a COTS product are released.
Effort (from 1-10, or N/A)

2. Tracking the change history of COTS products. i.e., tracking the versions placed into the system
including reasons driving the change.
Effort (from 1-10, or N/A)

3. Recording set of compatibilities and incompatibilities between sets of products. i.e., determine
compatibility between a new version of a COTS product and the existing versions of the other
products in the system. e.g., determining the (in)compabilities of all the COTS products in a system
with a new version of the operating system.
Effort (from 1-10, or N/A)

4. Tracking current configuration of products at each deployed site. (assumes that multiple instantiations
of the system exist and that it is possible to have different configurations at each location).
Effort (from 1-10, or N/A)

5. Tracking change history of products at each deployed site. (as with #4 above, assumes that there are
multiple instantiations of the system and that each system can be updated / changed independently).
Effort (from 1-10, or N/A)

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Smith M., Lawson D. W., Ertas, A., and Surles, J.
Process of Measuring the Maintainability of Commercial Off-the-Shelf (COTS) Based Systems: A Complexity
Approach 49

Figure 5: Method for computing the effort for maintaining a CBS from the questionnaire.

6. Managing license and service agreements for each product. i.e., tracking the licensing and service
agreements with each of the products in the project configuration. (assumes that at least one COTS
product in the configuration requires a license and/or service agreement.)
Effort - (from 1-10, or N/A)

Additional Notes / Thoughts: (Please indicate the question the note pertains to.)

The survey items were scored using a single numerical rating of the effort in each category (a Likert
scale [60,61]). Short answers enabled quicker analysis of the data from the questionnaire and allowed the
respondent to easily rate the system while maintaining the integrity of the measure. An ordinal scale
(where 1 represented minimal effort and 10 represented maximum effort) was used to compare the perceived
effort of maintaining of the evaluated system. Each item allowed the respondent to answer with a “not
applicable” (or N/A) response in the event that the system under evaluation did not experience any effort
associated with a maintenance activity. The “N/A” response allows each of the items in the questionnaire
to be exhaustive – enabling all known answers to the question [62]. The “N/A” response is particularly
relevant in systems that only have a single instantiation or where the maintainers of the system have not
encountered error conditions where COTS vendor support is required.

The face validity of the survey items was based on previous research identifying all of the areas in a
CBS that contribute to the effort in maintaining the system [14] and by having three SMEs analyze the
survey instrument [63] to ensure all areas of effort associated with maintaining the COTS components
were captured. The questionnaire was initially issued to a small sample of respondents to improve upon
its clarity and readability. After two revisions, the third and final version was submitted to all of the

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Transdisciplinary Journal of Engineering & Science 50

Table 2: Summary of results.

Perceived Effort Normalized Perceived Effort In-Degree Mean
Systems ↓ (from questionaire) ((Perceived Effort-5)/10) (from DSM)

System A 4.10 -0.09 2.68
System B 7.53 0.25 4.65
System F 5.40 0.04 3.39
System G 2.75 -0.23 2.69
System H 4.05 -0.10 2.45
System K 4.75 -0.03 2.29
System L 5.67 0.07 3.04

System M1 1.67 -0.33 2.76
System M2 1.42 -0.36 2.30
System M3 2.29 -0.27 2.80
System T1 4.75 -0.03 3.30
System T2 4.65 -0.04 2.64
System T3 5.50 0.05 3.17

respondents.

4.3.2 Human Subjects

To help ensure that the respondents had sufficient experience in the field to make an accurate assessment of
the effort to maintain the CBS, only senior engineering leaders participated in the survey. This minimized
the chance of a respondent having a limited experience on which to evaluate the system under test. Each
of the engineers or sustainment personnel completing the questionnaire had over 15 years of experience in
the field with five of the 13 having more than 25 years of experience.

4.3.3 Evaluation (scoring) of the Survey

The result from each response in the survey was treated as an ordinal value. While a rating of 7 means
more effort was exerted in maintaining the system as compared to a rating of 6, it is not valid to attempt
to distinguish gradients between the two scores [64]

4.3.4 Maintainability Index

The overall maintainability index of each system was obtained by averaging the scores from the five
maintenance activities known to comprise effort to maintaining CBS (see Figure 5). When computing the
maintainability index, all items were weighted equally [7]; therefore, the overall rating of the perceived
effort associated with each maintenance activity was obtained by averaging the responses in that activity’s
area.

The computation of perceived effort associated with system maintenance activities had to accommodate
the “not applicable” (N/A) response. The approach to dealing with missing data is not standardized and
is unique to every situation [59]. In this study, the maintainability index for the system where one area of
effort was not pertinent was computed as if the question did not appear in the survey. Essentially, the
number of survey items for the specific maintenance activity was decremented and the item simply was not
scored in the average. While this has the side effect of increasing the significance of the effort of those
items in the maintenance activity that do contribute to the effort in maintaining the CBS, it is the most
straightforward way of accommodating those systems that do not have every aspect of maintenance involved
in their sustainment. The option of substituting a nominal value (e.g., 5 since a rating of 5 represents
typical effort) for the question with the “N/A” response was considered; however, this artificially changes
the effort estimation by adding a contribution for an activity that is not part of the system. Alternately,

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Smith M., Lawson D. W., Ertas, A., and Surles, J.
Process of Measuring the Maintainability of Commercial Off-the-Shelf (COTS) Based Systems: A Complexity
Approach 51

M
or

e
Th

an
 T

yp
ic

al

Ef
fo

rt
Le

ss
 T

ha
n

Ty
pi

ca
l

Ef
fo

rt

P-value = .0066
R2 = 50.36%

Figure 6: Plot demonstrating a relationship between the perceived effort and the in-degree mean.

dropping the item for all of the systems under evaluation was considered; however, because the sources of
effort in maintaining systems is already established in literature and many of the systems under evaluation
reported effort associated with every aspect of maintainability, it did not seem reasonable to exclude effort
associated with these activities for those systems for which effort was expended.

5 Results

The results from the survey questionnaire (a measure of perceived effort) and the in-degree mean computation
(a measure of CBS complexity) are summarized in Table 2. The perceived effort (maintainability index)
score has been normalized to transition normal effort to 0 on the scale; therefore, negative effort represents
effort that is less than normal to maintain a system, and positive effort indicates a system that requires
more effort to maintain than normal.

The model for the in-degree mean asserts that the mean of the in-degree of the nodes in a CBS predicts
the effort required to maintain the CBS in the operational phase of the system. To better visualize
this relationship, it is helpful to plot the computed in-degree mean from each CBS as it relates to the
perceived effort derived from the survey for the same system (Figure 6). The regression model in Figure 6
suggests a statistically-significant relationship exists between the two measures of effort to maintain the
CBS. The p-value for the relationship is 0.0066, within the significance level of 0.05, and the coefficient of
determination (R2) value is 50.36%.

Not withstanding evidence that a predictive relationship exists, it can be observed that the 95%
confidence interval bands become wider as the in-degree mean increases, and the 95% predictive interval
bands are quite wide. This bandwidth relates to the size of the dataset, the fact that the dataset contains
few systems having high in-degree mean values, and that measurements of perceived effort are noisy. As

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Transdisciplinary Journal of Engineering & Science 52

has been noted, empirical studies of this type are rare and face many challenges. The promised dataset
for this study which began as 53 systems yielded only 17 systems, 13 of which were useable. Even so, the
dataset for this study is larger than or similar in size to datasets from other published empirical studies.
The same can be said for the number of systems with high in-degree mean values – such systems were not
well represented and only one made it to the final dataset. While this particular system does influence the
empirical model, the data reveal no evidence to suggest the measured parameters for this one system are
anything other than valid.

To further explore the strength of the relationship, Kendall’s tau coefficient was calculated to assess
the association based on ordinal ranking of the data. Kendall’s tau is less sensitive to the magnitude of
outlying values and has more robust statistical properties. In this study, Kendall’s tau was calculated
as 0.374, with a p-value of 0.087 for the null hypothesis test, H0: tau = 0. The p-value is marginally
significant, but if we accept this, Kendall’s tau suggests a relationship exists between the in-degree mean
and perceived maintenance effort, albeit a weak one. Collectively and within the limitations of the dataset,
both the regression analysis and Kendall’s tau suggest the in-degree mean can be used as an indicator
(weak predictor) of the effort required to maintain a CBS in the operational phase of the system

Descriptively, Figure 6 further shows that the effort required to maintain a CBS crosses from less-than-
typical to more-than-typical effort in between 3.0 and 3.5 for the in-degree mean of the system. Systems
with in-degree means lower than 3.0 have lower than average maintainability scores indicating that they
require less perceived effort to maintain than those systems with a high in-degree mean. Conversely, those
CBS with in-degree means above 3.5 exhibited more perceived effort to maintain. While this is a relative
measure, it is an indicator early in the design phase that an architect should consider other COTS products
or different COTS product arrangements to design a system that is easier to maintain in the O&M phase
of the program and reduce the overall lifecycle cost of the system.

6 Analysis and Discussion
From the results, it is possible to derive observations about the relationship of the perceived effort to
maintain the CBS and the architectural interactions of the systems. Further insight can be gained by
evaluating the in-degree model relative to the existing COTS maintainability approaches.

6.1 BASIS Technique
The BASIS technique is a three-step process to assist in COTS selection. The third step is most like
the in-degree mean process; however, the BASIS technique requires significant knowledge of the COTS
component’s external interfaces and how those interfaces interact with glue code. The BASIS technique
is not focused on the O&M phase of the program nor the effort associated with maintaining the COTS
installation base. Instead, it is focused on choosing the COTS products to meet the system requirements
and minimize development costs.

The in-degree mean process and the BASIS technique are complementary and, together, can be used
to develop a CBS that meets the system requirements and delivers a maintainable system. The BASIS
technique can be used to select the COTS components that most accurately meet the system requirements,
and the in-degree mean process can assist in choosing between multiple COTS components that meet the
requirements but require different levels of effort in the maintenance phase. The two approaches do not
significantly overlap.

6.2 COCOTS Cost Model
The COCOTS Cost Model is used primarily as a software-costing tool; therefore, there is no significant
overlap with the in-degree mean model. COCOTS is focused on the effort to interface custom software with
the external interfaces of the COTS products including the glue code that is often used to link multiple
COTS products together. While the model is planned to extend into the maintenance phase, the work is

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Smith M., Lawson D. W., Ertas, A., and Surles, J.
Process of Measuring the Maintainability of Commercial Off-the-Shelf (COTS) Based Systems: A Complexity
Approach 53

M
or

e
Th

an
 T

yp
ic

al

Ef
fo

rt
Le

ss
 T

ha
n

Ty
pi

ca
l

Ef
fo

rt

P-value = .1590
R2 = 17.19%

Figure 7: Plot demonstrating relationship between perceived effort and the number of COTS products in a CBS.

not yet complete; therefore, the in-degree process adds to the areas currently covered by the COCOTS
Cost Model.

6.3 COTS-LIMO
The COTS-LIMO model attempts to identity a break-even point where maintenance costs increase
disproportionately to the number of COTS products in the system. The theory is that there is some number
of COTS components beyond which the system is simply unmaintainable because the effort associated
with that number of COTS products is too great. This study tested the COTS-LIMO on the CBS dataset.

Figure 7 shows the comparison of the perceived effort (normalized) to the system size (number of COTS
products). The plot suggests the expected form of relationship between the number of COTS and the
perceived effort to maintain the CBS, which aligns with intuitions about COTS maintainability. But this
relationship is not statistically significant (p-value = .1590) nor is the level of explained variability high
(R2 = 17.2%).

From the empirical data, it may be inferred that the number of COTS in a CBS is only a portion of
the story. The data show that the number of interactions between the COTS components has a stronger
influence on the effort to maintain the CBS than just the number of COTS in the system.

6.4 Maintenance Delta
The theory of the Maintenance Delta asserts that there is a relationship between the Power-law and the
number of architectural interactions in a CBS. Specifically, the theory states that the difference in the
Cumulative Distribution Function (CDF) for the system and the CDF of a Power-Law distribution indicates
the maintainability of the system [6]. For each of the systems under evaluation, the Kolmogorov-Smirnov

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Transdisciplinary Journal of Engineering & Science 54

goodness-of-fit test [65] demonstrated that the system does not follow a power-law distribution. The α from
equation (1) associated with each system is less than 2, and typical power-law distributions have 2≤ α ≤3
[28]. So, the systems in the current sample set do not follow a power-law distribution. It is possible that the
sizes of the CBS under evaluation are simply too small to demonstrate power-law characteristics. However,
for systems with a single operating system, the hub of the node (the operating system) is connected to
every other node. This one node in a small system does not allow the system to follow the power-law curve:
it causes α to be less than 2 and beyond the typical range of the power-law interval.

6.5 Discussion
The results support certain observations. First, there are some products that have almost as many
dependencies as the operating system: Java is one of these products. Because of the high number of
dependencies, the operating system and those products with almost as many dependencies as the operating
system must be treated with special care when planning maintenance. For instance, careful planning must
occur when upgrading products with many dependencies simply because of the testing that is required
ensuring that all architectural interactions are satisfied. It has been the lead author’s experience that
Java is treated as a product that can be updated with little planning or coordination. The data suggest
that the number of architectural interactions involved with Java and similar products requires that either
they be upgraded only when complete system testing can be performed or that mitigation strategies be
implemented to reduce the number of architectural interactions with these individual products during the
design phase to make the CBS maintenance activities require less effort.

Second, the data suggest that system architects rarely have a comprehensive list of COTS products
that comprise the system; therefore, the understanding of the architectural interactions in the system
is incomplete. For example, in the data section for System T3, the architect only listed seven COTS
products in the response to the request for a list of COTS products that comprise the system. But, as
all of the architectural interactions were mapped, an additional five COTS products were discovered in
the underlying dependencies. System T3 was not unusual in this finding. Every other system had at least
two additional underlying COTS products that were not identified in the original request. Without a
complete understanding of the COTS products in the system, it is more difficult to maintain the system.
Additionally, without understanding the way the COTS products interact with each other, maintenance
activities associated with the COTS products may have unintended consequences which may result in
system outages or additional effort to properly manage changes to the system. The data also suggest that
personnel with the knowledge required to apply the knowledge are often not available in the later phases of
the development lifecycle.

Third, basing the CBS on a single operating system generally reduces the overall maintenance effort.
Systems A, F, K, M1, M2, M3, T2 and T3 are all based on a single operating system, and the average
perceived effort for these systems is 3.7. The systems with more than one operating system, including
a hypervisor as an operating system, have an average in-degree mean of 5.0. While this observation is
intuitive, even CBS based on a single operating system can exhibit high levels of perceived maintenance
effort. Systems F and T3 score high on both the in-degree mean and the average perceived effort even
though they are based on a single operating system. So, the selection of COTS products and the CONOPS
of the system still must be considered even when utilizing a single operating system.

7 Conclusions

7.1 Conclusions
The in-degree mean process offers a straightforward way for architects, integrators and maintainers to
determine the maintainability of a COTS deployment based on information available early in the development
phase of a CBS. The model is intuitive as maintainers of the system expect that the more interactions
between COTS products, the more effort changing those products will require. The maintainability of the

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Smith M., Lawson D. W., Ertas, A., and Surles, J.
Process of Measuring the Maintainability of Commercial Off-the-Shelf (COTS) Based Systems: A Complexity
Approach 55

COTS deployment in a CBS is an area that has received little attention, so the approach offers a way to
understand the complexity of the deployment through design structure matrices and network analysis. The
combination of these well-known tools provides a framework to compute the in-degree mean, a measure of
maintenance effort for a CBS. The in-degree mean can be used to compare deployments for competing
architectures or simply as a measure of the maintainability of the CBS architecture.

The perceived effort associated with maintaining 13 systems was compared to the in-degree mean of
the CBS derived from the architectural interactions of the systems. The comparison yielded a practical,
intuitive and statistically-significant result indicating that the in-degree mean does correlate to the effort
to maintain the systems.

The measure is useful in the beginning of the design phase to determine the maintainability of the
COTS installation. The artifacts derived from the model are useful throughout the CBS lifecycle to assist
in maintenance activities and to determine the level of effort required to maintain the COTS product
installation base. As the system matures, the architectural dependencies of the COTS installation can be
updated to increase the fidelity of the model.

7.2 Contributions

This work makes two separate contributions to the body of knowledge around CBS – the in-degree mean
model and a clearer definition of design attributes that contribute to complexity in the COTS installation
of a CBS. The in-degree mean model builds on existing models and gives additional insight into the
maintainability of a CBS in the O&M phase of a project. No other CBS metrics or models currently
consider this phase of the lifecycle when assessing effort associated with the development of a CBS, and
the most developed models are only focused on the effort to maintain the custom code that is written to
be delivered along with CBS instead of the effort to maintain the COTS-based installation. Because the
O&M phase of a project is the longest and most expensive portion of the system’s lifecycle, considering
the maintainability of the CBS during this phase can help lower the overall lifecycle cost of the system.
Additionally, the in-degree mean model enables architects to create systems that require less effort to
maintain which should increase the success rate of the development and deployment of CBS.

Second, the work adds the system CONOPS to the list of design attributes that add complexity to
the COTS installation. Previous research identified dependencies that COTS products create themselves
through their installation requirements; however, system architects create additional dependencies in the
COTS installation in the way data flows are designed in the system and the way information is stored in the
CBS. Including the system CONOPS in the design characteristics that add to complexity creates a more
complete understanding of the dependencies between COTS products and enables the system architect,
integrators and maintainers to make more informed decisions on the maintenance activities associated with
the CBS.

7.3 Practical Implications and Application

The in-degree mean is a straightforward calculation that gives the architect, system integrator and system
maintainer knowledge of the dependencies between the COTS products in a CBS. With this information,
many decisions can be made related to the design and maintenance of the CBS.

The in-degree model is also applicable to Free and Open Source Software (FOSS), Government Off-the-
Shelf Software (GOTS) and Research Off-the-Shelf (ROTS) Software. The only difference between these
software products and COTS is the method of procurement. The other attributes of COTS software are
the same and the dependencies between these types of software products and COTS are identical. For this
research, FOSS and COTS were treated identically and combined as a single product type. As an example,
Figure 4 shows Java, a FOSS product, included with other software dependencies. Including FOSS and
other types of software products is important as they are increasingly used to build modern CBS.

System architects can use the in-degree model to determine if the COTS installation for the project can
be maintained within a typical range of effort. Because the model only requires the system CONOPS and

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Transdisciplinary Journal of Engineering & Science 56

the installation manuals of the COTS products, the architect can compute the in-degree mean early in the
design phase and make COTS product decisions or CONOPS changes to decrease the effort to maintain
the system. In a system proposal, the architect can use the model to predict the level of effort required to
maintain the overall system design in the maintenance phase with a view to lowering project bid metrics.
Or, the architect can use the in-degree mean to demonstrate to a customer that one design is more robust
than another design assuming information about both systems is available.

System integrators can use the artifacts derived during the creation of the in-degree model to focus effort
on the COTS products that create the most complexity in the design. The DSM is a tool with decades of
research demonstrating its applicability in managing system complexity [56,66]. Because all architectural
interactions are mapped into a DSM in the creation of the in-degree model, the system integrators can
use the DSM to determine which products have the most dependencies and then employ SMEs on those
products to reduce the risk to the COTS installation.

Having a better understanding of the maintainability of the CBS allows the system maintainer to
fine-tune project bids associated with effort to maintain the system. A low in-degree mean indicates that a
system maintainer can lower the effort in a bid to maintain the system. Similarly, a high in-degree mean
indicates that the system maintainer should bid a high level of effort to maintain the system. Higher
fidelity bidding models decrease the financial risk to the system maintainer and assist in determining the
appropriate level of support for the O&M phase of the project.

7.4 Limitations / Topics for Further Study

The systems in this study ranged from ten to 59 COTS products and were gathered from three separate
and unrelated sources. While the sizes in the sample set are typical, larger systems exist. For example,
two additional systems with more than 150 COTS products were excluded from the analysis because no
one with current knowledge of the system was available to assist with understanding the architecture
and assessing maintenance effort. Future work should include these “super systems” to determine if the
in-degree mean applies to the very large systems.

The current approach combines multiple systems with various lengths of time in the operational phase
of the program– some over 13 years. It seems reasonable that these systems have been updated over their
lifecycle to lower the effort associated with maintaining the system. If one area of the system required
significant effort to maintain early in the project’s operational phase, changes could have been made to
decrease the effort and create a more maintainable system later in the operational phase. The current
survey approach does not account for these changes; therefore, the length of time a system has been in the
operational state may influence the perceived effort to maintain the system.

Management of the deployments of a single version of a CBS to multiple locations will contribute to
the overall effort to maintain the system. The research method identifies the activities associated with the
deployment to multiple sites as a factor that contributes to perceived effort; however, many of the systems
in the dataset did not feature multiple deployments. Future work should more thoroughly consider the
effort associated with deploying to multiple locations.

The current model is focused only on the complexity associated with the COTS installation in the
system. A CBS has the potential to have other dependencies including those on hardware components,
custom code components and other external interfaces. Future work should expand to include other
potential dependencies and the impact of those dependencies on the effort required to maintain the system.

The measurement of maintenance effort for CBS is an area that also warrants further study. For
example, future research could consider direct tracking of labor hours associated with maintaining the
COTS portion of a system. Identifying the actual COTS maintenance effort would eliminate the subjectivity
introduced by surveying an expert on each individual system. Alternatively, if perceived effort is retained
as a measure of CBS maintainability, the survey questionnaire could be expanded, the scoring approach to
“N/A” responses could be refined, and the weighting factors used to establish the maintainability index
could be evaluated.

Finally, the current sample set only included systems that were maintained by the same organization

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Smith M., Lawson D. W., Ertas, A., and Surles, J.
Process of Measuring the Maintainability of Commercial Off-the-Shelf (COTS) Based Systems: A Complexity
Approach 57

that developed the system. One system in the original request was maintained by an organization that
did not develop the system, and because of this unique characteristic, it was excluded from the evaluated
sample set. Many contracting offices are moving to a model where one company develops a system and
hands the complete system to another organization to maintain and enhance. Therefore, future work should
include investigations into the applicability of the model in this unique maintenance paradigm.

Contributions: This paper was produced from M.S.’s dissertation. W.L and A.E. was the co-advisor of
M.S’ dissertation committee. Both co-advisors review and edited the paper. J. S. helped for statistical
analysis using statistical analysis package “R”

Funding: This research received external funding from Raytheon Company through Transdisciplinary
Ph.D. Program on “design, Process, and Systems” at TTU.

Conflicts of Interest:The authors declare no conflict of interest.

References
[1] Kiss, J., Kosztyan, Z. (2009). The importance of logic planning in case of IT and innovation projects. Applied

Studies in Agribusiness and Commerce. pp. 15.20.

[2] Riaz, M., Mendes,E., and Tempero, E. (2009). A systematic review of software maintainability prediction
and metrics. In Proceedings of the 2009 3rd International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM ’09). IEEE Computer Society, Washington, DC, USA, 2009, pp. 367-377.
DOI=http://dx.doi.org/10.1109/ESEM.2009.5314233

[3] Loukides, M. (2014). Revisiting “What is DevOps,”OReilly Radar. (http://radar.oreilly.com/2014/06/
revisiting-what-is-devops.html)

[4] Smeds J., Nybom K., Porres I. (2015). DevOps: A Definition and perceived adoption impediments. in: Lassenius
C., DingsØyr T., Paasivaara M. (eds) Agile Processes in Software Engineering and Extreme Programming. XP
2015. Lecture Notes in Business Information Processing, vol 212. Springer, Cham.

[5] Abts, C. (2002). COTS-Based systems (CBS) functional density – A heuristic for better CBS design. In
Proceedings of the First International Conference on COTS-Based Software Systems (ICCBSS ’02), John C.
Dean and Andrée Gravel (Eds.)., Springer-Verlag, Berlin, Heidelberg, 1-9.

[6] Clark, B. (2007). Added sources of costs in maintaining COTS intensive systems. Crosstalk. 2007, Vol. 20
issue 6 pp. 4-8.

[7] Mitchell, C. (2009). Quality in interdisciplinary and transdisciplinary postgraduate research and its supervision:
ideas for good practice. Institute for Sustainable Futures, University of Technology, Sydney (UTS) prepared
for the ALTC Fellowship, Zen and the Art of Transdisciplinary Postgraduate Research, Sydney.

[8] M. Mitchell. (2009). Complexity: A Guided Tour. Oxford University Press, Inc., New York, NY, USA.

[9] Badampudi, D., Wohlin, C., Petersen, K. (2016). Software component decision-making: In-house, OSS, COTS
or outsourcing- A systematic literature review. Journal of Systems and Software, Vol. 121 pp. 105-124.

[10] Vale, T., Crnkovic, I., de Almeida, E. S., Neto, P. (2016). Twenty-eight years of component-based software
engineering, Journal of Systems and Software, Vol: 111, pp. 128-148.

[11] Yanes, N., Sassi, S. B. Ghezala, H. (2017). Ontology-based recommender system for COTS components.
Journal of Systems and Software, Vol: 132, Page: 283-297.

[12] Abts, C., Boehm, B., Bailey Clark, B. (2000). COCOTS: a COTS software integration cost model, European
Software Control and Metric Conference, Munich, Germany, pp. 325-333.

[13] Närman, P., Sommestad, T., Sandgren, S., Ekstedt, M. (2009). A framework for assessing the cost of it
investments. Proceedings of Portland International Conference on Management of Engineering Technology,
PICMET August 2009, pp. 3154-3166.

[14] Vigder, M. , Kark, A. (2006). Maintaining COTS-based systems: start with the design, Fifth International
Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS’05), Orlando, Florida, Feb
2006.

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Transdisciplinary Journal of Engineering & Science 58

[15] Boehm, B., Abts, C. (1999). Cots integration: plug and pray? IEEE Comput., Vol. 32, no. 1, pp. 135-138.

[16] Morisio, M. Seaman,C., Basili, V., Parra, A. (2002). COTS-based software development: Processes and open
issues, Journal of Systems and Software, Vol. 61, Issue: 3, pp. 189-199.

[17] Smith J. D., Hybertson D. (2002). Implementing large-scale COTS reengineering within the United States
Department of Defense. In: Dean J., Gravel A. (eds) COTS-Based Software Systems. ICCBSS 2002. Lecture
Notes in Computer Science, vol 2255. Pp 245-255 Springer, Berlin, Heidelberg.

[18] Rosa, W., Packard,T., Krupanand, A., Bilbro, J. W., Hodal, M. M. (2013). COTS integration and estimation
for ERP, The Journal of Systems & Software, 86, pp. 538550.

[19] Basili, V. R., Boehm, B. W. (2001). COTS-based systems top 10 list. Computer, Vol. 34, no. 5, pp. 91-95.

[20] Davis, L., Gamble, R. F., Payton, J.(2002). The impact of component architectures on interoperability. Journal
of Systems and Software, Vol. 61, issue 1, pp. 31-45.

[21] Kozlov, D., Koskinen, J., Sakkinen, M., Markkula, J. (2008). Assessing maintainability change over multiple
software releases. Journal of Software Maintenance and Evolution-Research and Practice, Vol. 20, pp. 3158.

[22] Ballurio K., Scalzo B., Rose L. (2002). Risk Reduction in COTS Software Selection with BASIS. In: Dean J.,
Gravel A. (eds) COTS-Based Software Systems. ICCBSS 2002. Lecture Notes in Computer Science, 2002, vol
2255. Springer, Berlin, Heidelberg.

[23] Clark, B., Cook, D., Lowery, H., Stults, K., Nilsen, K. (2007). COTS Integration, Crosstalk: The Journal of
Defense Software Engineering, Vol 20, No. 6, pp 4-24.

[24] Smith, M. W. Tate, D., Lawson, W. D. (2013). Measuring the Maintainability of Commercial Off-the-
Shelf (COTS) Based System Deployments: A Network-Based Approach, ASME 2013 International De-
sign Engineering Technical Conferences and Computers and Information in Engineering Conference. 2013,
V005T06A039V005T06A039.

[25] Anderson, R. B. (2001). The power law as an emergent property. Memory & Cognition, Vol. 29, pp. 10611068,
doi:10.3758/BF03195767.

[26] Barabási, Albert-László and Eric Bobabeau (2003). Scale-free networks. Scientific American, Vol. 288, No. 5,
pp. 6069. JSTOR, www.jstor.org/stable/26060284.

[27] Ted G. Lewis, (2009). Network Science: Theory and Applications. Wiley Publishing.

[28] Clauset, A., Shalizi, C. (2009). Power-law distributions in empirical data, SIAM Rev., vol. 51, no. 4, pp. 661703.

[29] Ardimento P, Bruno G, Caivano D, and Visaggio G. (2007). A maintenance oriented framework for software
components characterization, 11th European Conference on Software Maintenance and Reengineering, p 10.

[30] Allen, E. B., Gottipati, S. & Govindarajan, R. (2007). Measuring size, complexity, and coupling of hypergraph
abstractions of software: An information-theory approach.Software Qual J, 15, pp. 179212, doi:10.1007/s11219-
006-9010-3

[31] Davis, J., LeBlanc, R., (1988). A study of the applicability of complexity measures. IEEE Trans. Software
Eng., Vol. 14, pp. 1366-1372.

[32] Gao, S and Li, C.(2009). Complex network model for software system and complexity measurement. WRI
World Congress on Computer Science and Information Engineering, Vol. 7, pp. 624-628.

[33] Harrison, W. (1992). An entropy-based measure of software complexity. IEEE Transactions on Software
Engineering, Vol. 18, pp 1025-1029.

[34] Salman, N. (2006). Complexity metrics AS predictors of maintainability and integrability of software components.
Journal of Arts and Sciences, pp. 39-50.

[35] Siddhi, P., Rajpoot, V. K. (2012). A Cost estimation of maintenance phase for component based software.IOSR
Journal of Computer Engineering, (IOSRJCE), Vol. 1, pp.150.

[36] BhutaJ. and Boehm, B. (2007). A Framework for Identification and Resolution of Interoperability Mismatches
in COTS-Based Systems. In Proceedings of the Second International Workshop on Incorporating COTS
Software into Software Systems: Tools and Techniques (IWICSS ’07). IEEE Computer Society, Washington,
DC, USA, 2007, 2-. DOI=http://dx.doi.org/10.1109/IWICSS.2007.1

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Smith M., Lawson D. W., Ertas, A., and Surles, J.
Process of Measuring the Maintainability of Commercial Off-the-Shelf (COTS) Based Systems: A Complexity
Approach 59

[37] Garlan, D., Allen, R., Ockerbloom, J. (1995). Architectural Mismatch or Why it’s hard to build systems out of
existing parts. Proceedings 17th International Conference on Software Engineering, April 1995.

[38] Abts, C. and Boehm, B. (1997). COTS Software Integration Cost Modeling Study. USCCSE tech. Report
98-520, USC Center for Software Engineering, Los Angeles, CA.

[39] Lewis T. G. (2009). Network Science: Theory and Applications. Wiley Publishing.

[40] Suh, N. (2006). Application of axiomatic design to engineering collaboration and negotiation. in 4th International
Conference on Axiomatic Design, Firenze, 2006.

[41] Klimenko, A. Y.(2014). Complexity and intransitivity in technological development. J. Syst. Sci. Syst. Eng.,
Vol. 23, no. 2, pp. 128152.

[42] Zheng W. (2003). Entropy, information, noise - studies on system evolution. Journal of Systems Science and
Systems Engineering, Vol. 12, pp.2-12.

[43] Yassine, A., Whitney, D. , Daleiden, S., & Lavine, J.(2003). Connectivity maps: Modeling and analysing
relationships in product development processes. Journal of Engineering Design, Vol 14, no. 3, pp. 377-394,
DOI: 10.1080/0954482031000091103.

[44] Collins, S. T., Yassine, A., S. Borgatti, P. (2009). Evaluating product development systems using network
analysis. Syst. Eng.,, Vol. 12, pp. 55-68.

[45] Sosa, M. , Eppinger, S., Rowles, C. A (2007). Network approach to define modularity of components in complex
products. Journal of Mechanical Design, Vol. 129, no. 11, pp. 1118-1129.

[46] Doyle, J., Alderson, D., Li, L., Low, S. (2005). The robust yet fragile nature of the Internet. Proceedings of
the National Academy of Sciences of the United States of America.

[47] Shirinivas, S. G., Vetrivel, S., Elango, N. M. (2010). Applications of graph theory in computer science: An
overview. International Journal Eng. Sci., Vol. 2, no. 9, pp. 4610-4621.

[48] Newman, M.(2002). Assortative mixing in networks. Physical Review Letters, Vol 89, no. 20, 208701.

[49] Saaty, T. L. (2004). Fundamentals of the analytic network process – Dependence and feedback in decision-making
with a single network. J. Syst. Sci. Syst. Eng., Vol 13, pp. 129157.

[50] Schneidewind, N., Hinchey, M. (2009). A complexity reliability model. 20th Intl. Symp. Software Reliability
Eng., pp. 1-10.

[51] Newman, M. (2010). Networks: An introduction. Books.Google.com., Oxford University Press.

[52] Brandes, U., Lerner, J., Lubbers, M., McCarty, C., Molina, J. (2008). Visual statistics for collections of
clustered graphs. Proc. of the IEEE Pacific Visualization Symposium, pp. 47-54.

[53] Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Rev., Vol. 45, no. 2, pp.
167256.

[54] Smith, M. W.(2015). Measuring the maintainability of commercial off-the-shelf (COTS) based systems: A
complexity approach (Doctoral dissertation).

[55] Hayes,J. H., Zhao, L. (2005). Maintainability prediction: a regression analysis of measures of evolving systems.
IEEE Transactions on Systems, Man, and Cybernetics, pp. 601604.

[56] Eppinger,S. D. (2001). Innovation at the speed of information. in Harvard Bus. Rev., Vol. 79, pp. 149-158.

[57] Bhuta, J., Mattmann, C.A., Medvidovic, N., Boehm, B. (2007). A Framework for the assessment and selection
of software components and connectors in COTS-based architectures. Software Architecture, 2007. WICSA ’07.
The Working IEEE/IFIP Conference. on, pp. 6-6.

[58] Bertoa, M., Troya, J., Vallecillo, A. (2006). Measuring the usability of software components. Journal of Systems
and Software, Vol 79; Issue 3, pp. 427-439.

[59] Babbie, Earl R. (1989). The Practice of Social Research. Belmont, CA, Wadsworth.

[60] Correia, J. P., Kanellopoulos, Y., Visser, J. (2009). A survey-based study of the mapping of system properties
to iso/iec 9126 maintainability characteristics. Software Maintenance 2009. ICSM 2009. IEEE International
Conference, pp. 61-70.

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Transdisciplinary Journal of Engineering & Science 60

[61] Gliem, J. A., Gliem,R. R. (2003). Calculating, interpreting, and reporting cronbach’s alpha reliability coefficient
for likert-type scales. Midwest R Midwest Research to Practice Conference in Adult, Continuing, and Community
Education.

[62] Bailey, K. D. (2008). Methods of Social Research. Simon and Schuster. com.

[63] Stark, R., Roberts, L. (20020. Contemporary Social Research Methods. Belmont, CA, Wadsworth/Thompson
Learning.

[64] Kurtz, N. (1999). Statistical analysis for the social sciences. Boston: Allyn and Bacon.

[65] Haldar, A., Mahadevan, S. (2000). Probability, reliability and statistical methods in engineering design. John
Wiley & Sons, Inc. New York.

[66] Eppinger S. D., Whitney, D. E., Smith, R. P., Gebala, D. A. (1994). A model-based method for organizing
tasks in product development. Res Eng Design, Vol. 6, no. 1, pp. 1–13.

Copyright c©2019 by the authors. This is an open access article distributed under the Creative Com-
mons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

About the Authors

Dr. Michael Smith is a Principal Engineering Fellow at Raytheon in Richardson, Texas. Michael has more
than 23 years experience designing, integrating and maintaining COTS-based systems both domestically and
internationally. He is currently the Technical Director for Infrastructure where he is focused on optimizing the
design and deployment of platforms for large complex CBS.

Dr. W. Lawson’s research and creative activities encompass both technical and interdisciplinary domains.
Technical research has focused on geotechnical engineering for transportation applications, primarily in the areas of
soil/structure interaction, roadway maintenance, unsaturated/expansive soils, and foundations. Interdisciplinary
research has focused on engineering education, engineering ethics, engineering professionalism, assessment, and the
efficacy of distance learning methods. He has also published on geotechnical engineering history and is actively
interested in topics such as engineering judgment, risk, and decision making.

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

Smith M., Lawson D. W., Ertas, A., and Surles, J.
Process of Measuring the Maintainability of Commercial Off-the-Shelf (COTS) Based Systems: A Complexity
Approach 61

Dr. A. Ertas, Professor of Mechanical Engineering and director of the Academy for Transdisciplinary Studies at
Texas Tech University, received his masters and Ph.D. from Texas A&M University. He had 12 years of industrial
experience prior to pursuing graduate studies. Dr. A. Ertas has been the driving force behind the conception and
the development of the transdisciplinary model for education and research. His pioneering efforts in transdisciplinary
research and education have been recognized internationally by several awards. He is a Senior Research Fellow
of the ICC Institute at the University of Texas Austin, a Fellow of ASME, a Fellow of Society for Design and
Process Science (SDPS), Founding Fellow of Luminary Research Institute in Taiwan, an honorary member of
International Center for Transdisciplinary Research (CIRET), France, and a member of ASEE. Dr. Ertas has
earned both national and international reputation in engineering design. Dr. Ertas is the author of a number of
books, among them: Ertas, A. and Jones, J. C., The Engineering Design Process, John Wiley & Sons, Inc., first
addition 1993 and second edition 1996; Ertas, A., Prevention through Design (PtD): Transdisciplinary Process,
funded by the National Institute for Occupational Safety and Health, 2010; Ertas, A., Engineering Mechanics
and Design Applications, Transdisciplinary Engineering Fundamentals, CRC Press, Taylor & Francis Group, 2011;
A. Ertas, A., Transdisciplinarity Engineering Design Process, John Wiley & Sons, 2018. He has edited many
research books specific to transdisciplinary engineering design, among them: Ertas (editor), Transdisciplinarity:
Bridging Natural Science, Social Science, Humanities & Engineering, ATLAS Publications, 2011; B. Nicolescu, B.
and Ertas A., (editors), Transdisciplinary Theory and Practice, ATLAS Publications, 2013; Nicolescu, B., Ertas, A.,
(Editors), Transdisciplinary Education, Philosophy, & Applications, ATLAS Publications, 2014; Ertas, A., Nicolescu,
B., S. Gehlert, S., (Editors), Convergence: Transdisciplinary Knowledge & Approaches to Education and Public
Health, ATLAS Publishing, 2016; Nicolescu, B., Yeh, R. T., Ertas, A., (Editors), Being Transdisciplinary. ATLAS
Publishing, 2019. He has also edited more than 35 conference proceedings. Dr. Ertas’ contributions to teaching and
research have been recognized by numerous honors and awards. He has published over 175 scientific papers that
cover many engineering technical fields. He has been PI or Co-PI on over 40 funded research projects. Under his
supervision more than 180 MS and Ph.D. graduate students have received degrees.

Dr. James G. Surles received B.S. degrees in Mathematics and Computer Science from McNeese State University
in 1995 and an M.S. and Ph.D. in Statistics from the University of South Carolina in 1997 and 1999, respectively.
Dr. Surles came to Texas Tech University in 1999, where he is currently full Professor. His main research interests
are Reliability and the Exponentiated Weibull and Burr type X lifetime models, but he also enjoys working with
researchers from around Texas Tech on a variety of research projects.

ISSN: 1949-0569 online Vol. 11, pp. 32-61, 2020

