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D
ecarbonizing energy systems through the integration of decentralized renewable energy generators creates
opportunities for community-scale actors to participate in energy system decision-making. However,
typical modelling approaches exclude community stakeholders, causing a loss of local knowledge. This

exclusion is problematic for Indigenous peoples in so-called Canada where the natural resource industry harms
their land and communities. The Exploring Grassroots Renewable Energy Transitions (EGRET) platform
introduced in this work presents an alternative to typical energy system modelling because it facilitates
community participation throughout the model development and application process. This platform was
developed in partnership with a local First Nation’s energy specialist to assess whether solar panels could
increase community energy sovereignty. The platform’s user interface, visualization suite, and high-speed
machine learning models make energy system modelling accessible to community members through interactive
workshops. In the future, the EGRET approach could be generalized for stakeholder-led renewable energy
exploration in other community settings.

Keywords: Decarbonization, variable renewable energy integration, community energy, Indigenous energy,
energy system modelling, participatory modelling, machine learning.

1 Introduction
Mitigating climate change is an urgent global issue. In 2015, the United Nations Framework Convention on
Climate Change agreed upon a “safe” maximum global temperature increase of 2◦C above pre-industrial
levels, with an ideal upper limit of 1.5◦C later set by the Intergovernmental Panel on Climate Change
(IPCC) to further reduce the negative effects of global warming [1]. A 2018 report by the IPCC found
that this 1.5◦C limit could be reached as soon as 2040 [2]. Maintaining global temperatures within this
threshold requires that net-zero greenhouse gas emissions be reached by 2050 [3]. The International Energy
Agency (IEA) has urged the widespread, immediate deployment of every clean energy and energy efficiency
technology available to make net-zero possible over the next 30 years [3]. In response, the Canadian
government is targeting a two- to three-fold increase in national clean power production by 2050 [4].
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Towards this effort, variable renewable energy (VRE) generators are the technologies most commonly
associated with clean energy. These generators, such as wind turbines and solar photovoltaic panels,
transform abundant natural resources into energy with a relatively small carbon footprint. However, there
are two issues that make integrating VRE generators into electricity networks a challenge. First, as their
name implies, VRE generators provide an inconsistent source of energy because operators have no control
over when wind or sunlight is available. Electricity systems that incorporate VRE generators must have
sources of flexibility, such as storage devices, available to provide energy when the weather is cloudy and
still [3]. Second, VRE generators are often widely spatially distributed as they must be placed wherever
their powering resource is most abundant [5]. Current electricity systems are designed around centralized
power plants to simplify control and transmission.

The first challenge highlights the need for complex energy system modelling when integrating VRE
into the grid. Every region will have different characteristics — such as the flexibility of the existing
power system and the seasonal variability of wind and solar resources — that will dictate how much VRE
can be reliably integrated. The second challenge heralds an upcoming shift in energy system structure.
The decentralization of VRE generators brings new actors and new priorities into the energy space,
redistributing the power of traditional energy systems (in both senses of the word) to local actors through
energy democracy [6].

Looking at these two challenges simultaneously, a third issue emerges. Communities, individuals,
and other local actors in the energy democracy movement may not have the resources to design and
model a VRE-integrated grid in-house. Energy system models are computationally expensive to run,
and often require experience and training to operate [7]. Typical industry three-step scenario modelling
frameworks only include stakeholders in the scenario development phase, leading to the overrepresentation
of modeller perspectives and exclusion of local knowledge during model development and results analysis
[8]–[10]. For example, two of the most commonly applied tools for modelling decentralized energy systems,
the Hybrid Optimization of Multiple Energy Resources (HOMER) software and EnergyPLAN, exclude
most stakeholders because they require users to have prior knowledge of energy system analysis [11]–[13].
These tools are also not open source, blocking even experienced users from adapting them to reflect
community priorities through model (re)development. An open source tool, called the Open Energy
Modelling Framework (oemof), was developed to address this barrier, but it is still designed for users
with an understanding of energy system modelling and analysis [14], [15]. oemof developers also list the
communication of model results as an ongoing challenge, further limiting the ability of inexperienced users
to interact with the tool in the results analysis step of the modelling process [15].

While available tools do not facilitate accessible engagement, community input into the energy system
design process is crucial. Frameworks for change that bring individuals and communities into the decision-
making process through participatory governance are key to ensuring an equitable transition [16]. For
example, transdisciplinary approaches that include diverse stakeholders could help mobilize society to achieve
the United Nation’s sustainable development goal of affordable clean energy, which Canada has not yet
achieved [17]. The exclusion of stakeholders from renewable energy decision-making is particularly damaging
for Indigenous communities in so-called Canada because the natural resource industry and renewable energy
developments have inflicted harm on Indigenous lands and communities [18]. Decarbonization presents
an opportunity for reconciliation through Indigenous ownership over renewable energy production, but
barriers make ownership challenging for some communities [19], [20]. One common barrier is the need
for outside consultation when navigating energy technologies and modelling tools because of community
capacity strains, leading to the exclusionary modelling process outlined above [20].

The Exploring Grassroots Renewable Energy Transitions (EGRET) platform introduced in this work
aims to make all stages of the modelling process accessible to stakeholders. The guiding concept behind the
platform is the participatory system dynamics framework described in [21], which recommends the inclusion
of stakeholders at all stages of model development, use, and analysis to promote deep learning about the
system in question. Designed for use in collaborative workshop settings, the EGRET platform is powered
by high-speed machine learning models to support dynamic conversation and a broad exploration of the
renewable energy design space. These models are packaged with a user interface and visualization suite to
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make the platform accessible to use and interpret. The EGRET platform was designed and developed in
collaboration with Musqueam band’s community energy specialist to ensure the platform would meet the
needs of the community in which it would be applied.

1.1 xwm@Tkw@ ’y@m Energy Context

xwm@Tkw@ ’y@m (Musqueam) are traditional h@ ’n ’q@mi ’n@ ’m speaking people living in their territory (currently
called Vancouver and the surrounding areas) for thousands of years [22]. Musqueam Indian Reserve number
2, located at the mouth of the Fraser River to the north of Sea Island, is a small portion of Musqueam
Nation’s traditional territory. Musqueam Nation has a vision of self-sufficiency and self-government as
stated in the Nation’s comprehensive community development plan [23]. To achieve these goals, Musqueam
band and members have engaged in multiple projects focused on:

� Improving the energy efficiency of Musqueam homes and public buildings

� Reducing greenhouse gas (GHG) emissions from energy consumption in the community

� Investigating the feasibility of renewable energy generation on Musqueam reserve

Currently, Musqueam homes, public buildings, and vehicles are the major energy consuming sectors
and sources of GHG emissions in the community. Figure 1 shows the estimated shares of the community’s
top GHG emissions sources.

Figure 1: The estimated share of different GHG emissions sources in the Musqueam community.

As shown in Figure 1, vehicles are the most significant source of GHG emissions in the community.
Residential buildings are the second largest source of GHG emissions, with a total of 37% of annual GHG
emissions, while public buildings account for 7% of the annual GHG emissions.

As stewards of their land, Musqueam people are exploring options that enable their transition to a
net-zero community. One of the most promising technologies that enables such a transition is solar power.
Solar power is a commercially available technology that can provide clean electricity to the community
and reduce energy bills for both Musqueam members and the band. The development of renewable energy
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generation capacity in the community also aligns with the self-sufficiency and self-governance goals of the
Nation [23].

The EGRET platform provides a tool for Musqueam departments and leadership to engage with
community members regarding a renewable energy development project. The EGRET platform enables
Musqueam members and staff to investigate different aspects of a renewable energy project including the
cost to the community and GHG emission reduction potential. The EGRET platform also allows comparing
different renewable energy technologies as well as storage system sizes. The EGRET platform eases the
process of consultation with Musqueam members which is an integral step in any community-based project
in Musqueam.

The remaining three sections in this paper outline how the EGRET platform was constructed and
evaluated, highlight the key results of the evaluation process, and discuss these results in the context of the
platform’s goals. The methodology section focuses on the technical development of the platform, including
the machine learning approaches used and the data processing steps needed to apply them. The results
section considers both community feedback and objective measures of the platform’s effectiveness. Finally,
the discussion section draws conclusions about the platform’s ability to engage community members in the
energy modelling process, addresses the limitations of this project, and makes recommendations for future
work.

2 Methodology

The EGRET platform consists of three components: an interface where the user selects an energy system
scenario, a visualization suite that compares results, and the machine learning surrogate models that
transform the user’s inputs into these visualized results. The user interface and two visualization views
are shown later in figures 11 to 13. In essence, surrogate models use supervised learning to understand
and replicate the connection between the inputs and outputs of an established model. The concept is
applied here to maximize user interactivity; surrogate models can be evaluated much faster than the
optimization-based models they replicate due to the absence of a time-consuming optimization loop.

The EGRET surrogate model replicates the results of the Strategic Integration of Large-capacity
Variable Energy Resources (SILVER) model developed by the Sustainable Energy Systems Integration and
Transitions group at the University of Victoria [24]. SILVER takes a theoretical energy system — made of
user-specified generators and their characteristics — and simulates its operation based on given demand
and VRE potential data. The results are hourly generation profiles for each asset on the system as well
as an operational cost break down over the specified period. By creating a large dataset of inputs and
associated outputs from the SILVER model, EGRET can be trained to replicate these results in a fraction
of the time.

This section focuses on the development and testing of the surrogate model and the data upon which it
was trained, but it will also touch on the compilation of the platform and the final evaluation process. The
University of Victoria human research ethics board approved the original research project, code 21-0553-01,
on April 1st, 2022, with amendments accepted on October 6th, 2022.

2.1 Data Processing

Developing a surrogate model requires a dataset of inputs and outputs from the model being replicated;
in this case, that model is SILVER. The following paragraphs outline the data processing steps taken to
obtain SILVER inputs, as well as how those steps were repeated to build the full dataset. Figure 2 shows
an overview of these inputs and the data flow through both SILVER and the EGRET surrogate model, as
well as how the data is transferred from one to the other through the machine learning model’s training
process.

The first input needed to run SILVER is electricity demand for the region being modelled. Monthly
electricity demand values for 39 residential and 6 public buildings in the community were available. The
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Figure 2: The SILVER model is run repeatedly for randomly generated energy system scenarios to create a dataset
of inputs and outputs. In turn, this dataset is used to train the machine learning models behind the
EGRET platform.

residential data came from an energy audit process previously done in the community using the building
energy modelling tool HOT2000. These results were scaled up to represent the 250 total homes in the
community. The public building consumption data is actual electricity use measured from December 2017
to August 2021 and averaged per month. While these monthly totals are useful data points, the SILVER
model requires hourly demand resolution.

Two methods of increasing resolution from monthly to hourly were explored. The first method uses
hourly normalized internal gains specified by the National Building Council of Canada (NBCC) to scale
electricity demand [25]. In this method, the total community electricity consumption per month is divided
by the number of hours in the month to obtain an average hourly consumption value. This number is then
multiplied by the NBCC’s normalized hourly internal gain factor for each hour in the day. This process
results in twelve 24-hour representative load profiles –– one for each month –– which are then repeated to
build an annual curve. Because SILVER breaks the year into twelve thirty-day periods, the representative
days were each repeated thirty times to create a “year” of 360 days.

The second method adjusts an annual electricity demand curve with hourly resolution from a community
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in Northern Quebec, Kangiqsualujjuaq, with a similar population to Musqueam Indian Reserve number
2. This publicly accessible demand curve was provided by Natural Resources Canada (NRCAN). The
Kangiqsualujjuaq demand curve was scaled to match Musqueam community’s monthly demand. This
scaling process addressed population and climate differences between the two communities. In this method,
the total demand of the reference community is summed over each thirty-day period. Each hourly demand
value is then normalized by the corresponding thirty-day total to obtain hourly factors, which are in turn
multiplied by Musqueam community’s corresponding thirty-day demand to obtain an annual curve. Because
of the normalization steps in both methods, both 360-day “annual” curves have the same thirty-day total
demand, allowing for comparison. Figure 3 shows an annual comparison of the demand curves as well as a
snapshot of January demand values for better understanding of day-to-day variation.

Figure 3: These plots compare the demand curves produced by the NBCC and NRCAN demand methodologies.
The top figure shows the full annual profiles, and the bottom figure zooms in to show daily fluctuations
through the month of January.

These two methods were tested by modelling the scenarios shown in table 1 using SILVER over a
one-year period. Each scenario was modelled twice; once with the NBCC demand, and a second time with
the NRCAN demand. Variables not shown in table 1 were kept constant across all scenarios. Figure 4
compares the total generation by technology type resulting from the two demand methodologies for each
scenario.
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Table 1: SILVER scenarios used to test demand curve options.

Scenario Solar Capacity Wind Capacity Storage Power Storage Energy Import Cost Export Profit
kW kW kW kWh $/kWh $/kWh

1 - Baseline - - - - 0.093 0.093
2 - Solar 100 - - - 0.093 0.093
3 - Wind - 500 - - 0.093 0.093
4 - Solar & Storage 1000 - 130 232 0.1 0.093

Figure 4: Total monthly energy generation by technology type is shown for each scenario. The solid bars on the
left resulted from the NBCC demand methodology, and the hatched bars on the right resulted from the
NRCAN demand methodology.

As shown in figure 4, Scenario 1 produced the same total monthly generation for both demand
methodologies. This behaviour was expected as no variable generators were present in the scenario. The
same behaviour was observed in Scenario 2, showing that temporal demand discrepancies do not have
an effect when only limited VRE generation capacity is present. However, the total electricity exported
per month varies between demand methodologies when modelling Scenario 3. This behaviour shows that
differences in temporal demand values have an impact on SILVER’s results when VRE generation exceeds
consumption. As the amount of generation increases further beyond demand, the difference in outputs
from the two demand methodologies also increases, as shown in the modelled Scenario 4 results.

In the case of these two demand profiles, the first method has lower load values at midday, when
solar generation is most active, than the second method. As a result, the scenarios with solar generation
capabilities export more to the grid with the first demand profile. The first method also has lower demand
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values at night when wind resources are typically most abundant. As a result, the scenarios with wind
generation capability also export more to the grid with the first demand profile. These findings highlight
the importance of accurate community hourly demand data in situations where the community is looking
to sell excess electricity back to the grid.

For the purposes of this study, the demand curve produced by the second method was selected for use
in the EGRET training process because it is based on the demand of a real community and has more
day-to-day variability, as shown in figure 3.

Another data component needed to run SILVER is VRE potential. VRE potential is the amount of
electricity a given generator type would produce at every hour in the time series under typical weather
conditions. These datasets were obtained from Renewables.ninja for Musqueam community’s geographical
position using the Modern Era Retrospective-Analysis for Research and Applications (MERRA) 2019
weather file [26], [27]. Solar potential was calculated assuming the South-facing, 1kW panels were oriented
35 degrees from horizontal. Wind potential was calculated assuming a Vestas V47 660 turbine.

Table 2: Range of acceptable inputs to the SILVER model and their justification.

Variable Range Justification

Solar Capacity 1-6300kW The minimum reflects a small, one-residence installa-
tion. The maximum assumes the whole area Musqueam
community is considering for development is converted
into a solar farm [28].

Wind Capacity 10-1200kW The minimum reflects the smallest turbine available
on the market. The maximum assumes the whole area
Musqueam community is considering for development
is used for wind turbines [29].

Storage Power Capacity 5-130kW This range is based on commercially available battery
technologies.

Storage Energy Capacity 1-230kWh This range is based on commercially available battery
technologies.

Import Price 0.05-0.25 $/kWh This range is based on current BC rates of about
0.1$/kWh and projected provincial increases with a
bias towards rising energy prices [30].

Export Profit 0.05-0.25 $/kWh This range is based on current BC rates of about
0.1$/kWh and projected provincial increases with a
bias towards rising energy prices [30].

Number of Households 50-500 households There are currently about 250 homes in the commu-
nity. This range is biased towards growth due to the
community’s long housing waitlist.

SILVER also requires several inputs which together define the available electricity generation assets and
the overall energy system scenario. As shown in Figure 2, these inputs include the capacity of any solar
generation assets, the capacity of any wind generation assets, the power and energy capacity of any storage
assets, and the cost of importing electricity from the grid. The researchers adapted SILVER to include a
separate price for electricity being exported to the grid, so Musqueam members can explore the financial
impact of selling excess power generated by VRE technologies. The researchers also incorporated the
number of households in the community as an extra input, which is used to adjust the baseline electricity
demand curve and explore how future community growth could affect Musqueam’s energy system.

To create a dataset of SILVER inputs and outputs, the above-mentioned inputs were randomly generated
within a variable-specific acceptable range as defined by the researchers. These ranges and their justification
are summarized in Table 2. SILVER was run a total of 1996 times with randomly generated inputs to
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produce the dataset, which covered generation profiles for an entire year. However, preliminary attempts at
training a machine learning model on a whole year’s worth of data were less accurate than those trained on
a single month. The annual dataset was divided into twelve monthly datasets to facilitate the training of
separate monthly machine learning models. These twelve datasets were each split into training, validation,
and testing subsets each with 1434, 281, and 281 SILVER runs, respectively. All features and labels were
normalized using the mean and standard deviation of the corresponding feature or label in the training
dataset.

2.2 Surrogate Model Development
The machine learning surrogate model was developed in Python using PyTorch Lightning [31]. PyTorch
Lightning is a deep learning framework with built-in functions to simplify the machine learning process.
These tools were used to construct two different machine learning model architectures: a typical artificial
neural net (ANN) composed purely of fully connected layers or multilayer perceptrons (MLP), and a
residual neural net (ResNet) [32]. MLP models are very flexible in terms of architecture, size, and
hyperparameter selection. As such, they are good candidates for energy system model applications [33].
However, particularly complex data relationships (typically image recognition) can require neural nets that
are very deep for good accuracy [34], and these additional layers can make training difficult with traditional
MLPs [32]. ResNet architectures can alleviate these challenges [32]. The authors chose to investigate the
use of ResNet in case a deep neural net was required to predict the large number of time series outputs
produced by SILVER. Basic representation of the MLP and ResNet architectures are shown in Figures 5
and 6, respectively.

Figure 5: Basic MLP architecture with an input layer, hidden layers, and an output layer.

Both the MLP and ResNet architectures were tuned using the hyperparameter optimization framework
Optuna [35]. To do so, a skeleton model with optimizable parameters is trained with the provided training
dataset. The trained skeleton model then predicts outputs for the inputs in the testing dataset. These
predictions are compared to the actual outputs from the testing dataset using a loss function, resulting in
a loss value. Optuna then repeats this process with a new set of parameter values.

For the MLP architecture, the number of layers, number of neurons in each hidden layer, and activation
function applied to each layer, as well as hyperparameters like batch size, learning rate, and the loss
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Figure 6: Basic ResNet architecture made of groups of blocks. Each block is made of two layers, and every block
in a group has the same number of neurons per layer.
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function used to evaluate model performance were identified as optimizable parameters. For the ResNet
architecture, the number of groups, number of blocks in a group, number of nodes in a layer in each group,
activation function, batch size, learning rate, and loss function were identified as optimizable parameters.

Because of limited computational availability, the importance of having a unique model architecture
for each month versus using a shared model architecture for all months was tested. Each approach has
its own benefits; creating twelve unique models would optimize each architecture for the given 30-day
data subset, while a single, shared model architecture would allow for broader hyperparameter space
exploration and reduced optimization and training loads. Using the MLP architecture as a test, twelve
Optuna hyperparameter optimizations were conducted. Each optimization was trained on the corresponding
monthly data subset and consisted of 100 parameter trials. Each trial could take a maximum of 500 steps.
A single optimization was conducted on the January data subset with 1000 trials of 1000 steps each. Both
optimizations could prune trials with poor results after 25 steps.

To compare, the parameter values from the best trial for each optimization were used to construct
MLP models. The twelve unique monthly models and twelve copies of the shared model architecture were
trained and tested on their corresponding data subsets. The mean absolute error (MAE) loss and loss
variance for each test were recorded and visualized in Figure 7. The lines represent the average MAE loss
across all test predictions for each architecture type, and the shaded areas represent the variance in loss
across these test predictions. The shared MLP architecture performed better across all months, likely due
to deeper parameter space exploration and therefore better parameter optimization.

Figure 7: Comparing the MAE losses of unique and shared monthly model architectures. The shaded areas represent
the variance of the MAE loss for each architecture.

The shared architecture approach was carried forward to test the MLP and ResNet architectures’
ability to learn the SILVER dataset. The Optuna tuning process was repeated for an MLP and a ResNet
architecture using the January data subset. A total of 1000 trials of maximum 1000 steps each were
completed for each architecture. The parameters values from the best trials of the MLP and ResNet
optimization processes are shown in Tables 3 and 4, respectively. The average MAE losses across all test
predictions and the associated variances were recorded and visualized in Figure 8. The ResNet architecture
provided consistently lower losses across all months.
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Table 3: Optimal parameter values as determined by Optuna for the MLP architecture.

Number
of Layers

Neurons in
Hidden Layers

Dropouts
Activation
Functions

Batch Size
Learning

Rate
Loss

Function

Optimal Value(s) 2 84, 92 0.22, 0.20 Tanh, Sigmoid 96 5.85e-4 MAE

Table 4: Optimal parameter values as determined by Optuna for the ResNet architecture.

Number
of Groups

Number
of Blocks

Neurons per
Group Layer

Activation
Functions

Batch Size
Learning

Rate
Loss

Function

Optimal Value(s) 2 2 56,56 ReLU 224 6.02e-2 MAE

Figure 8: Comparing the MAE losses of MLP and ResNet shared model architectures. The shaded areas represent
the variance of the MAE loss for each architecture.

To further test the MLP and ResNet architectures, each machine learning model was used to predict
generation values for the four scenarios described above. The monthly by-technology generation totals
for the MLP and ResNet architectures were compared against the actual generation values produced by
SILVER for the same scenarios. The comparison is summarized in Figure 9. The ResNet model was
selected for the EGRET platform because it predicted positive generation values more accurately than the
MLP model (Figure 9) and had lower average loss values in testing (figure 8).

While Figure 9 shows that the ResNet architecture produces similar monthly totals to the original
SILVER model, further analysis was needed to assess the machine learning model’s hourly performance
relative to the computational model. The June hourly generation predictions from the ResNet machine
learning model were visualized against the computed values from SILVER for each of the four scenarios.
Figure 10 shows this visualization for Scenario 4. Unfortunately, a lack of community data made further
benchmarking against real measured values impossible.
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Figure 9: Comparing MLP and ResNet monthly generation totals against the actual totals computed by SILVER
for the four test scenarios.
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Figure 10: June hourly generation comparison between the ResNet model and SILVER for Scenario 4 – Solar &
Storage.

2.3 User Interface and Visualizations

To make the machine learning model user friendly, it was packaged with an interface and visualization suite
constructed in Bokeh [36]. This package also includes post-processing scripts that calculate the costs and
emissions associated with the modelled scenario. To calculate costs, the input capacity of each generator
type is multiplied by an associated capital cost constant, and hourly generation values are multiplied
by associated operating costs constants. Capital costs and operational costs are then summed for each
generator. To calculate emissions, the hourly generation from each generator type is multiplied by an
associated emissions constant and summed across the whole year. The cost and emissions constants are
summarized in table 5.

Table 5: Cost and emissions constants used to calculate financial and environmental impacts of each energy system.

Solar Wind Storage Imports/Exports

Capital Costs ($/MW) 2,600,000 [37] 8,000,000 [38] 700,000 [39] 0
Operating Costs ($/MWh) 11.4 [40] 13 [40] 2.8 [40] Variable Input

Emissions (tCO2/MWh) 0 0 0 0.04 [41]

These scripts also rescale the outputs into more familiar units — equivalent car use for emissions and
equivalent household consumption for generation — at the recommendation of the community energy
specialist. Figure 11 shows the interface that users manipulate to define an energy system scenario. Figure
12 shows the scenario-specific visuals representing the generation profiles predicted by the machine learning
model. Figure 13 shows the comparison visuals that illustrate the cost and emissions of each modelled
scenario.
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Figure 11: EGRET user interface.
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Figure 12: EGRET visualizations showing hourly generation by technology type.
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Figure 13: EGRET visualization comparing cost and emissions across modelled scenarios.
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2.4 Community Feedback

To gather feedback, community members were asked to participate in an informal workshop. Each
participant completed a pre-interaction questionnaire, investigated the costs and benefits of community
solar generation using the EGRET platform, and then completed a post-interaction questionnaire. These
questionnaires evaluated EGRET for both utility and usability. The utility aspect considered the platform’s
ability to answer the identified community energy question, while usability looked at the accessibility and
ease of use of the platform.

To evaluate utility, participants were asked the same set of questions both pre- and post-modelling to
assess the impacts of the platform. The questions focused on the participants’ understanding of the local
electricity system in terms of cost, emissions, and sources as well as whether the participants had ideas for
how the electricity system’s costs and emissions could be reduced. The set also included questions about
the participants’ opinions on solar panels and whether they felt comfortable sharing their thoughts with
others. All questions used a Likert scale [42]. Through these questions, the researchers hoped to evaluate
how the platform affected the participants’ energy system knowledge, opinions on potential future changes,
and confidence in their position.

To evaluate usability, the participants were asked whether the user interface was easy to use, whether the
available inputs provided adequate flexibility, and whether the visualization suite presented the information
needed to explore the community energy question. These questions also used a Likert scale [42]. Participants
were also given opportunities to suggest additional inputs or visualizations and provide general feedback on
the platform. Through these responses, the researchers aimed to understand the platform’s ease of use and
accessibility.

3 Results

Three members of the community administration team participated in the interactive workshop. These
participants were the target audience for the EGRET platform because it is important to include community
decision-makers such as planners and elected officials in modelling initiatives to support policy discussions
[43]. The participants’ responses were coded into numeric values for visualization with Strongly Disagree
corresponding to a score of 1, and Strongly Agree corresponding to a score of 5. Each participant’s pre-
and post-modelling responses to the utility portion of the questionnaires are summarized in Figure 14. The
participants’ scores on the platform’s usability are summarized in Figure 15.

Although the participants’ usability scores were all neutral or positive —- and open-ended feedback
questions were left blank –– participants provided oral suggestions to improve both the user interface and
visualization suite. These suggestions included the addition of local annual capacity factors for wind and
solar as reference information on the user interface page, references for potential funding options that
might offset capital costs, modelling options for single home scenarios, the ability to show production from
a single generator type on the hourly generation plots, and a pie chart of total monthly generation by
generator type.

In addition to participant feedback, the EGRET platform was evaluated based on its speed. Figure
16 compares run times for the computational model (SILVER), the machine learning models, and the
EGRET platform (which combines the machine learning model run times with additional data processing
and visualization steps). Run times were recorded for each of the four scenarios described previously. All
runs were completed on the same computer with a Dual-Core Intel Core i7CPU 3.1 GHz and 16 GB RAM
memory storage.
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Figure 14: Participants’ pre- and post-modelling scores for their energy system understanding, ideas for the future,
support for solar panels, and confidence in sharing their opinion on solar panels with others.
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Figure 15: Participants’ feedback on whether the platform’s user interface was easy to use, the available options
allowed for exploration, and the visualizations provided adequate information. All participants answered
neutrally or positively.

Figure 16: Test scenario run times for each model type. The EGRET run times include the machine learning
predictions, data post-processing, and visualization times.
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4 Discussion

The following section evaluates the EGRET platform against its goals for utility, usability, reduced
computational burden, and output accuracy, and it also discusses the platform’s limitations and potential
next steps for improvement.

4.1 Utility

Responses to the utility questions varied greatly between the limited number of participants. All participants
felt the same level of comfort sharing their opinions on solar panel installations before and after using the
EGRET platform, suggesting that the experience did not improve self-confidence in or ownership over
their energy system ideas. The overall change in ideas for energy system emissions reduction across all
participants was also zero, likely because the British Columbian grid already has low emissions due to
hydro integration. A different measure of environmental impact, such as land use or displacement, might
be better suited to the provincial context. In general, the participants felt they had a better understanding
of the local energy system’s costs, emissions, and electricity sources after interacting with the platform,
and supported the installation of solar panels in the community more strongly. EGRET created a positive
knowledge building experience about energy system costs and the effectiveness of solar panels, but it did
not facilitate learning about emissions or emissions reduction.

4.2 Usability

Participants’ usability scores suggest that interacting with the EGRET platform was accessible and provided
suitable flexibility and information to explore community energy questions. The participants were also
able to learn how to use the platform and model and discuss three scenarios within an approximately
one-and-a-half-hour workshop. Most energy system models require days or weeks of training to use [7].
However, the one neutral score for user interface accessibility and the numerous verbal suggestions for
improvements highlight the need for additional work on the platform’s usability.

4.3 Computational Burden

The machine learning models behind the EGRET platform are approximately five orders of magnitude
faster than the original computational model. It takes some additional time to process and visualize these
results on the platform. However, the overall run time of all three steps — modelling, processing, and
visualization — is still short enough to facilitate live workshops and broad design space exploration that
would be tedious with the original computational model.

It should be noted that although the EGRET platform is faster at run time, the machine learning
model development process is extensive. Essentially, the computational burden is shifted from the actual
modelling to the dataset creation, hyperparameter optimization, and model training steps needed to create
the surrogate model. The accessibility of computing facilities limits who can develop platforms like EGRET.
Further, communities looking to pursue ideas generated through the EGRET platform must complete
additional modelling with other tools to finalize their designs due to EGRET’s limitations as described
below. EGRET does not reduce the computational expense needed to integrate renewable energy generators;
rather, it shifts the expense such that community members can be included in the decision-making and
scenario exploration phases of the process.

4.4 Accuracy

Although the machine learning models provide significant run time speed benefits, these benefits come at
the cost of decreased accuracy. Figure 10 highlights two reductions in accuracy that could be improved
through further experimentation with machine learning architectures. First, the EGRET models predict
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small outputs from generator types with zero capacity. Second, the models’ predictions for storage activity
do not fully capture the charge and discharge spikes in the actual results.

A third, hidden source of inaccuracy is the lack of hourly community electricity demand data. As shown
in Figure 4, the shape of the hourly demand curve impacts monthly export totals. Because exporting only
occurs when generation exceeds demand, the difference between production and demand at every time
step affects how much electricity is used or sold. Hourly electricity demand profiles were not available for
the Musqueam community, so the predicted export quantities may not be accurate. Further, a lack of
community electricity cost and supply data prevented benchmarking of the computational model against
the current scenario. As a result, the researchers had to assume that the SILVER model was accurate in
the community context based on previous benchmarking exercises at different scales [24].

4.5 Model Limitations

Several other assumptions inherent in the SILVER model introduced limitations to the EGRET platform.
The first limitation is the parameters defining the VRE potential time series used to calculate hourly VRE
generation. For both wind and solar, these time series are dependent on the selected technology model
and its specifications. In the case of solar, the time series is also dependent on the orientation of the
panel installation. Although the assumptions made for solar panel orientation reflects best practices for
Musqueam community’s location, members might want to orient their panels differently (eg. on the roof of
homes).

SILVER was also constructed with larger scale electricity applications in mind. As a result, transmission
infrastructure is modelled as long distance direct current transmission. At the community scale, the
transmission infrastructure would use alternating current flow. Alternating current flow produces higher
losses due to capacitance. There is a need for better distribution-scale modelling to understand how these
factors impact community energy planning.

4.6 Institutional Limitations

While the EGRET platform contains several internal limitations, the institutional context in which the
platform is used can present additional challenges. One of the initial goals of the EGRET platform was to
promote a sense of ownership over community energy decisions. Ideally, community members should have
actual ownership over renewable energy developments to realize the development’s benefits, but a simple
modelling tool cannot provide that [44]. Several barriers, such as inequitable access to financing and a lack
of long-term clarity on incentives, can make ownership difficult in the current energy context [20]. [44]. For
example, the EGRET platform assumes that Musqueam Nation could secure a power purchase agreement
with BC Hydro, but these contracts are difficult to obtain. The application of the EGRET platform in this
context could create feelings of “misempowerment” as community members are encouraged to engage with
a system that does not value their input [10]. There is a risk that if “the tool falsely suggests free access to
the machinery of plan making”, it will cause a loss of trust in institutions of power [10]. There is a need to
refine policies that support Indigenous ownership in renewable energy development so communities can
implement and benefit from the systems they envision with tools like the EGRET platform.

4.7 Future Work

Focusing back on the EGRET platform itself, there are several areas of future work that would increase the
scope of the tool’s abilities. First, SILVER only considers the operating costs of the energy system being
modelled. Capital costs were an important consideration for community decision makers, so a simplistic
capital cost calculation as described in the methodology section was included in the post processing steps
and optionally included in scenario comparisons. In future versions, capacity expansion modelling could be
integrated into the platform to better capture capital costs.
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Second, demand-side technologies will play an important role in the energy system transition alongside
renewable energy generators, but SILVER does not currently include non-electric sources of energy like
natural gas or gasoline. Demand-side considerations can only be integrated if they use technologies like heat
pumps or electric vehicles. Expanding the suite of computational models behind the EGRET surrogate
models to integrate building energy and transportation tools would expand the application of the platform
into demand-side management strategies.

Third, further development of the machine learning model architecture is needed to accurately predict
storage charge and discharge profiles. Although the Musqueam community is grid connected, the community
energy specialist expressed an interest in having storage technology available in case of an outage. In the
larger context, some Indigenous communities in Canada are off-grid, making storage a critical component
of their energy systems. These off-grid communities typically use diesel generators to produce electricity,
which introduce another layer of complexity when integrating renewable energy generators due to diesel
generators’ minimum capacities. Introducing diesel generator capacity as an input to EGRET would make
the tool useful for off-grid communities.

While the above-mentioned improvements would make EGRET applicable in broader contexts, the
way that EGRET is currently constructed would require the underlying machine learning models to be
retrained on local data for each community that wishes to use it. Including VRE potential and demand time
series as variable inputs to the machine learning models would make EGRET applicable to any location
without the retraining requirement. Including time series data as inputs would necessitate restructuring of
the machine learning model architectures to something more complex. This approach has already been
applied by Westermann to the building energy space; the authors constructed a geographically flexible
surrogate model that recreates building energy simulations using temporal convolutional neural networks
[45]. Applying such an approach to the EGRET platform to create an open-source tool would further
increase the accessibility of energy system modelling.

5 Conclusion
The EGRET platform looked to restructure typical energy system modelling approaches to better suit a
future with decarbonized and decentralized power sources. By facilitating community-scale engagement in
renewable energy development initiatives, the EGRET platform supports the decentralized governance
structures needed for an equitable transition to sustainable power systems. The application of machine
learning to create an interactive model for use in a community workshop setting was successful in that
the EGRET platform provides reasonable predictions for wind and solar generation and grid connection
electricity flow in a timeframe that promotes conversation. The speed at which EGRET makes these
predictions relative to the original computational model shows strong potential for using machine learning
in participatory system dynamics modelling approaches. The user interface and visualization suite also
received positive feedback on their utility and usability from a limited number of community testers, further
supporting the use of ongoing collaboration through the model development process to ensure the finished
product’s applicability in the community context. However, the EGRET platform’s storage predictions
could benefit from further development of the machine learning architecture, and several other factors
limit its application beyond the Musqueam community. Future work to generalize the platform for use
by other communities would provide additional support for Indigenous engagement in renewable energy
decision-making and an equitable transition to sustainable energy sources at a local scale.
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