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T
his paper outlines a two-layer neural network
used to declare small arms fire based upon
a temporal, electro-magnetic signature.

The neural network discriminates targets from
noise and common clutter sources, such as sun
glints. This neural network is compared against a
baseline algorithm derived from traditional detection
and discrimination processing. A simulation is
performed to evaluate the performance of each
approach, and the simulation results are captured
via a Receiver Operator Curve. This algorithm, in
conjuction with a high-rate infrared sensor, would
provide law-enforcement a tool for mitigating urban
violence.

Keywords: law-enforcement, small arms fire
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1 Introduction

The National Education Association Health Infor-
mation Network states that, in the United States,
over eighty people die from gun violence each day
[1]. A partial technical solution to this problem
would be to deploy a small arms fire indication sys-

tem. Even though indication systems cannot pre-
vent gun use, they can quickly locate a gunfire event,
aiding law-enforcement in the apprehension of sus-
pects. However, small arms gunfire is a difficult event
to detect because of its limited signal, small dura-
tion, and small volume. There is also the additional
challenge of competing common natural phenomena,
such as sun glints (electro-optical systems) and thun-
der (acoustic systems) which can be misinterpreted
as small arms fire. Although there exists small arms
fire indication systems for military applications, cre-
ating a law enforcement system is technically more
challenging, since these class of systems are detecting
weapons with smaller signatures [2]. In military op-
erations, larger assault rifles (e.g. AK-47 and M-16)
are prevalent and pose the main threat, whereas in
law enforcement applications, smaller handguns are
a larger threat. Also, in the military, guns are often
fired in semi-automatic or fully-automatic mode, but
in law enforcement applications, an event with only
one shot is the typical scenario. Multiple shots per
small arms fire event increase the amount of signal
and can provide an extended temporal signature for
use in discrimination.

Notionally, there are two types of small arms
indication systems. The first is a high-altitude
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surveillance system that can identify and report
weapons fire over a large field-of-regard (FOR). This
information is crucial for removing repeat gun vi-
olence offenders from the streets [3]. One design
challenge associated with this system is to identify
high-bandwidth processing that can compliment the
high-performance, large-FOV sensor. The process-
ing needs to report information reliably, meaning
that there is a high target probability of detection
(PD) and a low false alarm rate (FAR). Due to the
high processor data bandwidth needed to process
information from high-resolution sensors (i.e. high
angular resolution is needed to detect distant tar-
gets over and extended ground areas), these systems
would also require algorithms that can efficiently
use available processing resources, whether it be
an Application Specific Integrated Circuits (ASIC),
Field Programmable Gate Arrays (FPGA), or ana-
log processing embedded within the detector Read
Out Integrated Circuit (ROIC) [4].

The second type of small arms fire indication sys-
tem would be used by teams that routinely engage
in hostile conditions, e.g. Special Weapons and Tac-
tics (SWAT) teams, to quickly determine if there
is small arms fire and its source. This will provide
the information needed to ensure the safety of the
public and those who serve the public. It is even
more important for these locally-deployed systems to
have a high PD and a low FAR since inaccurate in-
formation can result in injuries and death. Although
these systems do not require the same processing
bandwidth as the wide-coverage surveillance systems,
these systems often have stringent cost, size, weight,
and power constraints, which limit the amount and
type of processing that can be implemented. As
a result, these systems also need to efficiently use
processing resources [5].

In either case, the system needs algorithms that op-
erate reliably while minimizing processing resources.
Traditional algorithms for detection and discrimina-
tion exist, but the hypothesis is that neural networks
can be used to improve overall system performance
and increase processing efficiency [6 , 7]. This would
enable systems that better address the needs of law
enforcement. This paper is on the assessment of how
neural networks can be used for law-enforcement
small arms fire indication systems and how they com-
pare to traditional algorithms. To limit the scope,
the focus will be on how neural networks can improve
probability of declaration (PD) and probability of a

false alarm (PFAR). PFAR can be translated into
FAR by multiplying it with the sensor bandwidth.
Electro-optical systems will be assumed since they
provide better line-of-sight information, they do not
require an active transmitter, and can provide better
overall performance [8]. To discriminate between
targets and clutter, e.g. sun glints, spectral, tempo-
ral, or spatial signatures can be used. This paper
will focus on temporal processing, since it does not
require the use of spectral filters tuned to the tar-
get and can achieve large FOR given detector sizes
available today [4].

2 Background

Figure 1 below provides an overview of small arms,
their components, and their ammunition. The car-
tridge has a projectile, propellant, primer, which is
enclosed in the case. First, the cartridge is loaded
into the chamber. In the chamber, the cartridge
will be struck by the firing pin, which in turn lights
the primer. The primer will burn the propellant,
which will create gases that expand fourteen thou-
sand times its volume forcing the bullet down the
barrel out the muzzle, and the hot cartridge case
will be ejected out of the chamber [9].

Firearms are weapons that are based upon the
principles of kinetics: they use force to propel pro-
jectiles toward targets. Higher speeds and larger
projectile masses transmit more energy, allowing for
greater damage, longer ranges, and better accuracy.
To generate these forces, a propellant is ignited in
the chamber, but due to various inefficiencies, only
30% of the propellants energy is transferred to the
bullet; the rest is dissipated by other means. These
inefficiencies allow for small arms fire detection sys-
tems, not based on detecting bullets, to operate.
Generally, more propellant allows for greater force
to be imparted to the projectile, which causes more
damage, but also results in more energy dissipated
to the environment and hence a stronger signature
to be detected. A more detailed description can be
found in the book by Klingenberg and Heimerl [10].

There are three major EM events associated with
gunfire. The first, primary flash, consists of high-
speed, high-energy propellant exiting the muzzle.
Primary flash is an extremely brief event that is
difficult to detect. The second, intermediate flash,
occurs further outside the muzzle. Intermediate flash
is a result of high pressure gases and propellant decel-
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Figure 1: Firearm construction and terminology.

erating and decompressing as it leaves the gun. The
last, secondary flash consists of the high-temperature
exhaust gases and propellant mixing with the atmo-
sphere and cooling down. Since this event has the
longest duration, it is likely to be the easiest for sen-
sors to detect. As a result, this study will attempt
to model this specific phenomenon. The three EM
events are captured in Figure 2 [10].

It is common in the IR modeling community to
use Plank’s Blackbody Law to model radiance, en-
ergy, per area, per time, per solid angle to determine
signal intensity. Plank’s Blackbody Law, which de-
termines a perfect emitter, spectral radiance, Lbbλ,
at temperature, T , and at wavelength, λ, is [11].

Lbbλ(T, λ) =
2 · h · c2

λ5
· 1

e
h·c
λ·k·T − 1

(
watt

cm2 · sr · µm

)
(1)

Where k is the Boltzmann constant, h is the Plank
constant, and c is the speed of light. To understand
the energy radiated by a blackbody in a waveband
bounded by the lower limit, λ1, and the upper limit,
λ2, the spectral signature, provided by Plank’s Law
is integrated over the region of interest:

Lbb(T, λ1, λ2) =

∫ λ2

λ1

Lbb(T, λ)dλ

(
watt

cm2 · sr

)
(2)

Planks Blackbody Law can be used to provide a
first-order model of the spectral response and ra-
diance of all the objects needed for this article: a
small arms flash, background materials, and sun
glints. The gases and particulates temperatures leav-
ing a gun muzzle have been measured to be anywhere
from 1000 to 1500 K. Grant and Hardy used a small
emissivity of 0.05-0.1 to estimate the radiance of
small arms flash [12], which is utilized herein. This
emissivity, in combination with the 1000 K tempera-
ture, the lower-end exhaust temperature, was used
to generate the small arm flash greybody curve pre-
sented in Figure 3. Notice that most of the flash
energy is in the mid-wave infrared (IR), 3-5 µm, and
short-wave IR, 1-3 µm, spectrum. A mid-wave IR
(MWIR) system will be assumed for this work be-
cause it is consistent with military small arms fire
indication system [2].

Next, the background objects can be modeled as
blackbodies, i.e. emissivity of one, at ambient tem-
perature, e.g. 300 K, plus or minus several degrees.
This spectral response curve is also plotted in Fig-
ure 3. Notice that despite small arms flash limited
emissivity, the small arms flash still has considerably
more energy than background objects in the afore-
mentioned spectra. This demonstrates that in the
MWIR spectrum, small arms flash has more energy
than background material. As a result, small arms
flash will appear as a signal with a amplitude larger
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Figure 2: Phenomenology.

Figure 3: Blackbody spectral signatures.

than its surrounding background material. Lastly,
the sun can be modeled via a 5200 K blackbody;
if the object is reflective, the sun glint spectral en-
ergy response can also be approximated by a 5200
K blackbody, minus atmospheric effects. This is the
third curve captured in Figure 3. Notice that sun
glints have more energy than flash throughout the
EM spectrum. This prohibits using energy levels
exclusively for detection and discrimination. This
point will be developed further below [12].

Spera and Figle provided a small arms MWIR
radiant intensity measurement of 5 watts/sr to 100
watts/sr in their work on sniper detection systems
using uncooled sensors [13]. It is not clear what value
is correct for the radiant intensity in this application,
but the assumption that law enforcement needs to
detect smaller weapons such as handguns is made.
This assumption places target intensities somewhere

near the bottom of the spectrum, i.e. 10 watts/sr.
Spera and Figle also provided a small arms flash
size and duration, which can be used to derive total
and average flash energy [13]. This information is
summarized in Table 1.

Given the estimates provided by Spera and Figle,
it can be inferred that small arms flash is an ex-
tremely intense event with a small spatial size and
short time duration. Using common analogies, small
arms flash is as intense as four, 100-watt incandes-
cent light bulbs (calculation assumes 2.5% luminance
efficacy, ratio of the power generated in the visible
spectrum over the total power consumed), but fifteen
times shorter than a single humming bird wing flap,
and occupying the volume of a human toddler [14,
15]. This is consistent with the phenomenology that
extremely hot emitted exhaust gases and unspent
propellant remain close to the muzzle and do not
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take much time to reach the temperature/pressure
of the surrounding atmosphere.

To provide a comparison point, a target often
modeled using infrared sensors is a tank. Using the
assumptions stated in the infrared modeling tool user
manual of the U.S. Army, NVTherm [16], in a 300 K
background, at night, in Southwest Asia, a tank can
be modeled as an 11.6 m2 (125 ft2), 305 K blackbody.
Although the tank radiance in the MWIR spectrum
is lower than a flash, i.e. 2.217x10−4 watt/cm2/sr,
the tank radiates the same amount of energy as a
flash within 2.44 ms-171 ms. One way to view this
is that although the instantaneous energy is large
compared to other phenomenon, its relatively small
size and short duration can make it a harder event
to detect. It is this reason that to attain similar
coverage, a small arms indication system requires
higher performance sensors than systems designed
to detect and discriminates targets that remain in
the field of view for an extended period. Higher per-
formance is often achieved through higher resolution
detectors, and this increased sensor performance of-
ten translates to higher processing bandwidth; hence
the larger emphasis on using processing resources
efficiency compared to systems that detect and dis-
criminate objects like vehicles, people, etc [16].

Plank’s Blackbody Law only models radiance. The
radiance can be integrated over the projected area to
determine the radiant intensity. This can be used to
determine the radiant intensity of a sun glint. This
allows the direct comparison of intensities, imaged
by an unresolved sensor, of flash and sun glint. To
model radiant intensity, unresolved sensors will be
assumed. The radiance of a 5200 K blackbody in
the MWIR spectrum is 22.7 watt/cm2/sr. The sun
diameter is about 1.396x109 m, and the distance
is about 4.56x1010 m [17]. Using the small angle
approximation, the apparent size of the sun from

the earth is 0.923 cm. Assuming that the sun glint
has the same intensity and apparent size this would
translate to a radiant intensity of 18.802 watt/sr.
This means that the instantaneous energy of a glint
is close to two time that of a flash. This information
will be used to generate temporal signature of flash
and sun glints in this work [18].

This gunfire flash event is characterized by a rapid
increase of exhaust volume leaving the muzzle, fol-
lowed by a decrease in exhaust temperature, creating
an IR temporal signature that resembles Figure 4.
Intensities are depicted relative to noise levels and
durations relative to frame rate. The curve in Fig-
ure 4 only provides an estimate, and the temporal
profile was not validated by experiment. The abso-
lute intensity and duration was omitted since doing
so would require a priori knowledge of the perfor-
mance, atmospheric transmission, etc, and is not
needed for this processing architectures evaluation.
What is important and is included in the figure is
the flash intensities relative to sun glints [10]. From
a modeling perspective, sun glint can be modeled
as a “spotlight.” If the platform is flying through
that spotlight, the sensor will be collecting photons
from materials reflecting solar energy; otherwise the
sensor will not be receiving energy. This will create a
signature that roughly resembles a square pulse (see
Figure 4). The pulse duration will be a function of
the platform altitude and velocity, but for this work,
it will be assumed that the sun glint pulse duration
will be the same as the flash duration. This is a
realistic assumption for some applications and will
provide a challenging stimulus for signal detection
and discrimination [18].

The stimuli, which include all the aforementioned
information, are captured in Figure 4 and will be
used to evaluate neural networks for this application.
To produce reliable small arms fire indications, the
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processing would have to perform two functions:
detect a signal and noise and to discriminate flash
from temporal phenomenon, such as sun glints.

3 Approaches

Two different approaches will be evaluated in this
paper: an algorithm based upon traditional digital
signal processing techniques and a two-layer neural
network.

3.1 Matched Filter Based Approach

The approach based on traditional processing con-
sists of two parts: a filter that separates signal from
noise and another filter that separates signal from
clutter. Filtering signal from noise is insufficient, by
itself, because clutter, such as sun glints, can have
more energy, after filtering, than small arms flash.
Filtering signal from clutter is not sufficient due the
noise level, cause by variation in the background
signal and random processes in the sensor, and the
limited temporal samples per event. In these sit-
uations, noise can easily cause false alarms. The
traditional approach uses a matched filter, an opti-
mal filter for detecting a signal in noise, provided
that the noise can be characterized using second-
order statistics, to separate the signal from noise.
The definition of a simplified matched filter is [19]:

OSN = S̄TM−1Z̄ (3)

Where s is the known signal vector, M is the noise
covariance matrix, z is the input data vector, and
OSN is the output of the filter. Superscript T is used
to denote a vector transpose operation and super-
script -1 is used to indicate a matrix inversion. If the
input data vector, z is weak or wide-sense stationary,
meaning that the first and second order moments
do not vary between elements, and each element
is independent of each other, the noise covariance
matrix becomes the identity matrix multiplied by a
constant. This further simplifies the matched filter
to the filter given by:

OSN = S̄T Z̄ (4)

A threshold, TSN, can be applied to the filter
output, OSN, to declare the existence of a signal.
The set of all declared signals in noise is given by:

HSN = {OSN : OSN > TSN} (5)

TSN can be adjusted to trade PD and PFAR.
To separate signal from clutter, the input data sig-

nal, z, vector can be normalized to create a signature
that declares based upon the temporal profile of the
signal. A matched filter can then be applied to the
normalized signal to determine how close the tem-
poral shape of the filter matches the known signal.
This filter is given by:

OSC =
S̄T Z̄∑
Z̄

(6)

Where OSC is the output of the filter optimized for
signal to clutter. A different threshold, TSC, can
be applied to the filter output, OSC, to declare the
existence of a signal in clutter. TSC will also impact
PD and PFAR. The set of all declared signals in
clutter is given by:

HSC = {OSC : OSC > TSC} (7)

The filters specified in Equations 3 and 5 can be
combined to discriminate signal from both noise and
clutter. This algorithm, which serves as the baseline
in this work, is captured as:

HS = HSC ∪HSN (8)

An illustration of the baseline algorithm using a
high-rate, low-noise signal is presented in Figure 5.
The input signal,z, consist of white Gaussian noise,
a small arms flash signal (left) and a sun glint signal
(right). Notice that the filter, optimized for detect-
ing signal in noise, HSN, declares both the flash and
glint and a filter optimized for detecting signal in
clutter,HSC, declares signals consisting of only noise,
independent of threshold values. However, combin-
ing these filters produces a robust algorithm that
declares flash and not sun glint with high reliability
as is shown below.

3.2 Neural Network Based Approach

The neural network approach that will be taken for
small arms detection and discrimination is a two-
layer neural network. The first layer will consists of
two neurons, one that is matched to small arms flash,
OSN and the other matched to a sun glint, OGLINT.
The equation for a matched filter, assuming weak
or wide sense stationary and independent samples,
is presented in Equation 2. These neurons will be
connected to a third neuron, OS. In the second-
layer neuron, the flash matched filter input will be
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Figure 4: Small arms declaration neural network.

Figure 5: Baseline algorithm simulation.

excitatory, i.e. the weight, WSN, will be positive,
the glint matched filter input will be inhibitive, i.e.
the weight, WGLINT, will be negative, and the bias,
B, can be either positive or negative. The weights
and the bias for the third neuron can be adjusted
to trade PD and PFAR. This neuron operation is
captured in Equation 9.

Os = WSN ·OSN −WGLINT ·OGLINT +B (9)

The two-layer neural network is summarized in
Figure 6. The boxes with z−1 represent unit de-
lays needed to synchronize the temporal matched
filters inputs. If the neuron output, OS, is positive,

a declaration will be made. One aspect that differen-
tiates the neural network from the algorithm based
on traditional signal processing is the inclusion of
the clutter signal, which allows the algorithm to be
tuned to eliminate specific phenomena. The hope
is that this design feature can be used to improve
performance. Another difference is the existence of
only one threshold, compared to the two needed for
the baseline. Having to pass two distinct criteria
through an algorithm can make achieving a high tar-
get PD, i.e. greater than 95%, more difficult. Also,
having only one threshold may simplify adjusting
the algorithm parameters.

An illustration of the neural network, using a
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Figure 6: Small arms declaration neural network.

Figure 7: Neural network simulation.

high-rate, low-noise signal is presented in Figure
7. The input signal, z, is the same signal used to
simulate the baseline algorithm. Notice that the
glint matched filter, OGLINT, is strongest during
when glint is present and the neural network output,
OS, is positive only when the target is present. For
this simulation, a weight of 1 was used for WSN, a
weight of 2 was used for WGLINT, and a bias of -1.5
was used for OS.

4 Simulation

A simulation was performed to evaluate the two-
layer neural network against the algorithm based

around traditional signal processing. The simulation
consisted of injecting 4000 samples of small arms
flash signals with white noise, sun glints signals with
white noise, and white noise into each algorithm.
See Figure 8 for a representative sample of each
type of stimulus. The Matlab code used to perform
this simulation is captured in the Appendix. This
code is based off a larger small arms fire indication
technology and architecture analysis and simulation
perform by Symeonidis [4].

If an algorithm declared either a sun glint with
white noise or a signal that only has white noise, the
detection was recorded as a false alarm. Algorithm
thresholds and weights were varied to characterize
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Figure 8: Example Stimuli.

Figure 9: Small arms declaration neural network.

algorithm performance over range, and the results
were captured via a Receiver Operating Character-
istic (ROC) curve that relates PD and PFAR. The
results of the simulation are captured in Figure 9.
The emphasis of this work is on systems with both
high PD and low PFAR, and consequentially, this
graph focuses on this region of the ROC curve. The
significant finding from the simulation is that if high
PD, i.e. greater than ninety-five percent, is a require-
ment, lower PFAR can be achieved using a two-layer
neural network. In areas where PD is diminished, the
traditional signal processing algorithm outperforms
the neural network. This suggests that the inclusion

of the clutter signal and the existence of only one
threshold can improve performance. However, the
neural-network does not outperform the baseline fil-
ter in all conditions. If the emphasis is primarily on
minimizing false alarms and the designer is willing to
compromise PD, the matched filters, based on max-
imizing signal-to-noise (SNR) and signal-to-clutter
(SCR) is the better method.

5 Conclusion

The emphasis of this work was identifying an algo-
rithm capable of achieving high probability of detect
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while minimizing false alarms for systems detecting
signal in noise and known clutter. These algorithms
can potentially improve the performance of law en-
forcement small arms fire indication systems. The
improved neural network performance, over an ap-
proach based on traditional processing, was achieved
because specific clutter phenomena can be filtered
out and a second-layer neuron, which performs a
weighted sum, can reduce the number of threshold
used to separate signal from noise and clutter from
two to one. This is significant since it allow for re-
liable system operation, i.e. systems with high PD

and low PFAR, i.e. the top-right portion of the ROC
curve.

Outside performance, another positive aspect is
that the architecture can be easily expanded to
detect other temporal events, perform classifica-
tion/identification, and further reduce PFAR by fil-
tering other temporal clutter sources. If the target
and clutter signatures are not known, or vary con-
siderably, the neural network can also be trained
using representative data. Another advantage is this
neural network can be implemented using only three
weighted sum whereas the baseline algorithm a simi-
lar number and type of operations and one divide (see
Equation 6). Divides can be significant because they
can occupy more processing resources/bandwidth
and do not exist in some embedded processors. Over-
all, neural networks can provide advantages over tra-
ditional filters designed to optimize SNR and SCR,
provided that the requirements is for high PD and
there is information about the clutter environment
that can be incorporated into the processing.

Future work can be the implementation of the
small arms fire indication neural network, specified
in this article, in a real-time law enforcement system.
This system can be used to evaluate whether the
detection and discrimination neural network can op-
erate with data captured from diverse environments,
each containing unique temporal clutter. Once the
approach has been proven, an analog implementa-
tion of this neural network can be integrated with
the processing to develop a low impact, i.e. cost,
size, weight, and power, electro-optical small arms
fire indication system. The advantage of this neural
network is that it can easily be implemented using a
small number of common analog circuits and lends
itself to processing that can be embedded within
a sensing element. This may be the realization of
the high-altitude surveillance and potentially hostile

local-engagement systems discussed in the introduc-
tion section [4].
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Appendix

Presented in this appendix is the Matlab code used to simulate the baseline and neural network detection
and discrimination filters. This code correlates to the Equations 3 - 9 presented in the approach section.
This curves presented in Figure 4 was used for the flash−temporal−low input and this script was used to
generate Figures 5, 7, and 8 and the ROC performance curve in Figure 9.

% Generating signals
for i=1:num−sim

noise−temporal=wgn(1,21,0); % white Gaussian
noise
flash−noise=flash−temporal−low+noise−temporal;
glint−noise=glint−temporal−low+noise−temporal;

% Performing processing for each signal
for j=1:3

if (j==1)
signal=flash−noise;

elseif (j==2)
signal=glint−noise;

else
signal=noise−temporal;

end

% Baseline processing filters
signal−detect(i,j)=sum(signal.*flash−filter);
signal−norm=signal./sum(signal(:));
signal−discrim(i,j)=sum(signal−norm.*flash−filter);

% Neural inspired filers
signal−flash(i,j)=sum(signal.*flash−filter);
signal−glint(i,j)=sum(signal.*glint−filter);

end
end

.

.

.
% Generating baseline ROC curve
i−count=0; j−count=0;
for i=low−val−i:inc−i:high−val−i

i−count=i−count+1;
detect−thes=signal−detect¿i;
for j=low−val−j:inc−j:high−val−j

j−count=j−count+1;
discrim−thre=signal−discrim¿j;
baseline= detect−thes+ discrim−thre;
base−thre=baseline¿1.5;
PD−base(i−count,j−count)=sum(base−thre(:,1))/num−sim;
PN−base(i−count,j−count)=sum(base−thre(:,2))/num−sim;
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PC−base(i−count,j−count)=sum(base−thre(:,3))/num−sim;
PFAR−base(i−count,j−count)=(PN−base(i−count,j−count)+

PC−base(i−count,j−count))/2;
end

end
.
.
.
% Generating ANN Receiver Operating Characteristic (ROC) curve
i−count=0; j−count=0;
for i=low−val−i:inc−i:high−val−i

i−count=i−count+1;
signal−bias=signal−flash+i;
for j=low−val−j:inc−j:high−val−j

j−count=j−count+1;
signal−ANN=signal−bias-signal−glint*j;
ANN−thre=signal−ANN¿0;
PD−ANN(i−count,j−count)=sum(ANN−thre(:,1))/num−sim;
PN−ANN(i−count,j−count)=sum(ANN−thre(:,2))/num−sim;
PC−ANN(i−count,j−count)=sum(ANN−thre(:,3))/num−sim;
PFAR−ANN(i−count,j−count)=(PN−ANN(i−count,j−count)+
PC−ANN(i−count,j−count))/2;

end
end
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