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U
sing a non Shiga toxin producing Escherichia
coli such as the lab K12 strain we will
demonstrate a method to develop signatures

suitable for hyperspectral data searches. Conven-
tional laboratory methods remain the mainstay to
isolate and identify suspected sessile and platonic
bio-material, however the FDA Food Safety Mod-
ernization Act (FSMA), Jan 04, 2011, is requiring
additional proactive identification and monitoring.
These proposed methods could allow higher screening
coverage without additional laboratory time. These
standard test are laborious and can take days to
complete. Optical, noninvasive techniques such as
hyperspectral remote sensing technology has been
adapted for microscopic sensing. Many applications
have pursued this avenue with varying degrees of
success. As the cost of hyperspectral detectors falls,
the promise of an optical detection solution is within
reach. The goal of this research is to develop a
detection method based on hundreds of cells still in
their platonic stage before the damaging effects of
their more colonized form develops. Once colonized,

removal is much more difficult as environmental
coping mechanisms are fully developed. The objective
is to determine a HSI signature that has a low false
alarm rate (Fa)from unstained (low contrast) and
stained ( high contrast) samples.

Keywords: Hyperspectral, ISODATA, spec-
tral angle mapper, spectral correlation mapper,
hypercube, HSI signature

1 Introduction

As the food chain grows to a global distribution
system, different levels of consumer concerns must
be addressed. One of these concerns that directly
affects our health, especially those who may be im-
mune compromised, pregnant, very young or old,
is common microbiological contaminations such as
E. coli. For consumers, the detection of such is
nearly impossible and we rely soley on appearance
of the product and description on the package [1]
and reputation of the vendor.
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Escherichia coli, usually called E. coli, is a type
of bacteria that lives in the intestines of humans
and animals. Although most types of E. coli are
harmless, some types such as E. coli O157: H7, can
make people sick, causing serious stomach cramps,
diarrhea and vomiting. Serious complications of an
E. coli O157:H7 infection can cause permanent organ
damage such as kidney function loss or death.

People get E. coli infections by eating foods con-
taining the bacteria. Symptoms of infection include:
Nausea or vomiting, abdominal cramping, sudden,
severe diarrhea that may cause bloody stools, pal-
lor, high blood pressure, gas, fatigue, and fever. E.
coli infection may initiate devastating illness such as
Hemolytic Uremic Syndrome (HUS), particularly in
children young and mature adults which can cause
life-threatening complications.

Tens of thousands of kilos of fresh fruit and vegeta-
bles in the country are being destroyed as consumers
across Europe and beyond shun these staples for fear
of contracting the potentially deadly bacteria [2]. E.
coli contaminations are both common as cross con-
taminations are boht easily fostered and prevented
however difficult to detect.

The increased public awareness has demanded
greater controls and advancement in food quality
controls. As Rahman [3] stated, food products that
are preserved depend on a multitude of hurdles being
properly controlled. One of which is the microbial
population in the product. Critical limits, known as
the hurdle effect, are controlled with heat, tempera-
ture and chemical treatments however quantifying
the microbial content is a slow process that requires
professional laboratory implementations. Much work
has been done in defining these hurdles [4] and their
interactive causal effects. Leistner defined F val-
ues to quantify variables such as acidity (pH and
titratable), moisture content and correlate to micro-
bial colony populations in relation to these values.
The use of hyperspectral technology to successfully
quantify the food safety variable space is supported
by many research programs such as Zhu [5], as he
demonstrates the ability to determine the frozen
history of products using visual infrared and near
infrared (VIR/NIR) screening.

The signature is without doubt the value added
commodity within the area of research concerning
hyperspectal data mining. Because of their intrin-
sic value and system specific nature most systems
will not depend upon reuse and will develop their

own set of signatures. In none of the literature, did
we find formal standards nor even the suggestion
of a standard that would allow a greater degree of
portability. A signature is a mathematical device
used to mine hyperspectral imaging (HSI) data in
an effort to determine the material composition of
a given scene. A spectral peek followed by decay
then followed by a combination of the same, e.g., will
typically constitute a mathematical signature. The
mathematical relationships vary widely, using vari-
ous geometric measurements, distance from DC, and
relative positions to patterns detected by machine
learning applications.

The signatures developed here are multi-
component constructs that can independently pro-
duce some degree of success during a field search.
We used two different base line algorithms and then
integrated them together taking advantage of their
strengths to create a single algorithm that is stronger
and produces a lower Fa. The primary component in
our algorithm is the Spectral Angle Mapper (SAM)
[6, 7, 8, 9] which characterizes the shape of a line
when compared with a baseline standard. The sec-
ond component that is integrated into the ID chain
is known as a Spectral Correlation Mapper (SCM)
[10, 11] which measures the strength of the linear
relationship between two variables.

2 Microbiology Introduction

Most E. coli strains are harmless, but Shiga toxin-
producing Escherichia coli (STEC) can cause food-
borne disease in our cattle and beef products. STEC
is one of the most important factors affecting the
beef industry and is one of the public health threats
faced in food processing. E. coli O157:H7 is the most
commonly identified STEC in North America and
has been illegal in beef products since 1994. E. coli
O157:H7 and other serotypes cause approximately
113,000 illnesses and 300 hospitalizations annually,
according to the Centers for Disease Control and
Prevention (CDC). Identification and removal of
contaminated beef products is therefore a critical
concern for the cattle industry, and even contact
with contaminated fecal matter (as fertilizer) can
lead to spread of the pathogen in produce shipped
to the marketplace. A direct screening method that
can be employed in all areas of food screening and
processing would therefore be useful as a deterrent to
future STEC outbreaks. Methods in current use for
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Figure 1: Three dimensional data construction.

STEC diagnosis include pulsed-field gel electrophore-
sis (PFGE) subtyping, and a conventional micro-
biological method involving cell counting. While
these methods are accurate and remain as the gold
standard for food-borne pathogen detection time is
needed, from days to weeks to provide an accurate
result. Therefore, a more rapid method of pathogen
detection is needed that is very sensitive and accurate
for classification of contaminated foodstuffs. Optical,
noninvasive techniques such as hyperspectral remote
sensing technology, adapted for microscopic proce-
dures, may provide a needed venue for safe, fast, and
efficient screening of possible contaminants. New
applications of this technology as well as reduced
cost make hyperspectal sensing a perfect candidate
for identification of STEC in the food supply.

Bacteria colonizing the gut of an animal are typ-
ically found in multi-species biofilms lining the in-
testinal epithelium, and as such are also attached
to a surface of some kind. A biofilm is typified as
an aggregate bacterial community enclosed by extra-
polymeric substance (EPS). Free-floating planktonic
bacteria are released by the biofilm in regular in-
tervals, to find new areas to colonize, and many
of these will also attach to new surfaces readily in
the gut and pass along attached to the fecal matter
as well. The ability of these bacteria to attach to
surfaces provides us with new opportunities to find
hyperspectral signatures specific for the combina-

Figure 2: Spectral comparison of what we see under the
microscope.

tion of the contaminating bacteria attached to the
surface of the bound organic material. This ability
to provide a hyperspectral signature against various
backgrounds could lead to diagnostic tools that are
far more specific and efficient in identifying STEC,
as well as reducing lab workload.

Identifcation of bacteria bound to a surface also
provides an advantage in that the bacteria are immo-
bilized, reducing the effect of Brownian motion and
“wiggling” observed in the capture of hyperspectral
images by Cray et al. [11] used with glass slides
and traditional microscopy techniques. Agar plates
with affixed E. coli colonies were used to generate
our hyperspectral image (HSI) data. Our technique
delineated in this paper uses a data analysis proto-
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col to sort through the accumulated HSIs to sort
between real and trash data, producing a composite
signature which can be used to verify the presence
of E. coli bacteria. It is definitely possible that
this signature can be developed against other bound
bacterial-contaminated surfaces as well, leading to
a library of potential signatures that can identify
various contaminants in our food supply.

3 Materials and Methods

3.1 Data Set

A hyperpixel1 is a three dimensional data construct
that represents reflectance values at the step inter-
val ( 10 nm ). In Figure 1 each tick along the X
axis represents 10nm starting at 450 nm. Values
have been omitted for image cleanness and did not
contribute to the clarity of the message. If we plot
a hyperpixel we may get something that looks like
Figure 2 where reflectance Rx(λn) is plotted along
the Y axis and wavelength (λ) along the X axis. This
image depicts the spectral spread as a continuous
line however the hardware bins the spectrum into
finite spectral ranges, grossly selectable by the user
with a minimum step of 10nm (per end user sensor
specifications). It’s this binning that allows for the
feature selection and pattern recognition sequences
of unsupervised learning algorithms. This represents
a single hyperpixel which correlates to a single XY
location in a Cartesian image system. By organizing
the hyperpixels into an image format addressed as
in a XY system we create a three dimensional cube
known as a hypercube addressable as [ X, Y, λ ],
with λ increasing along the formal Z axis.

3.2 Target Environment

The target image is complicated because in the pro-
cess of growing the specimen, the biologist has to pro-
vide fluid and nourishment for the bacteria to thrive.
This is accomplished by adding a small colony into
a rich agar material. The material is home grown
by most commercial and academic labs. The Texas
Tech Microbiology Department uses the following
recipe: 5g yeast extract, 200 ul NaOH, 15g granu-
lated agar mix, and 1L deionized H22O. This is but

1In traditional image processing, we refer to a pixel by its
Cartesian address, where a hyperpixel is addressed the
same, it carries additional spectral data per channel thus
is modeled in three dimensions.

one of the series of variables that makes this HSI
signature challenging. Of course there are the other
compounds in the agar mix. We attempt to classify
them as “media” in this study. Most of these detec-
tions are aggregated into single hyperpixels and can
be isolated having a characteristic signature when
they are the predominate end member in a pixel.
Some however will have additional end members
present within the projected pixel footprint result-
ing in what is known as a mixed pixel [12, 13, 14].
This mixing will confuse the signature resulting in
a missed classification thus in this implementation
will push it into known trash class or unclassified
trash.

3.3 Developing Truth

Iterative Self-Organizing Data Analysis Technique
A (ISODATA) is a method that performs unsuper-
vised learning by formulating data into like clusters
through a closest average fit with the fit factor (ω)
being a user input. While not required, in our trials
we have seeded the twelve bins (labeled A..L, with
M being a catch all) with known data values (classi-
fications), see Table 1. Through visualization these
datum were selected and coded into the analysis as
manual truth.

Table 1: Enumerations identifying media types where
targets are located.

Enumerator HEX Value Count

LIGHT MEDIA 0x0001 14
LIGHT STAINED 0x0002 18
LIGHT UNSTAINED 0x0004 8
LIGHT TRASH 0x0008 10
MED MEDIA 0x0010 31
MED STAINED 0x0020 22
MED UNSTAINED 0x0040 13
MED TRASH 0x0080 14
DARK MEDIA 0x0100 49
DARK STAINED 0x0200 45
DARK UNSTAINED 0x0400 32
DARK TRASH 0x0800 23

Initialization of the ISODATA algorithm, accord-
ing to these authors [15, 16], each bin is to be ran-
domly seeded. However, experience has shown that
the runtime of the algorithm can be reduced by selec-
tively seeding the bins thus providing guiding weight
to its convergence for both algorithms. Unlike the
ISODATA routine, this implementation does not
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allow the seeds to be reorganized thus providing a
reloadable signature basis.

Several locations within the data have been se-
lected and identified by a subject matter expert, in
this case a doctoral candidate in microbiology, with
extensive microscope experience. Enumerated val-
ues were assigned to the manually classified data
points and counted. We noted the quality of the
typical microscope light source was inconsistent with
the constraints necessary to evaluate HSI data and
broke the classifications into three general light lev-
els, light, medium, and dark – a general reference
to the collective reflectance quality of the tested
image. Any unidentified artifacts are classified as
trash knowing that future classification efforts may
well identify them. The hex (base 16) values are
randomly assigned and have value only in binning
the data.

Confusion tables are commonly used in determin-
ing the correctness of the algorithm detections. In
this case, Table 2, illustrates the ideal detections
that would match the priori classifications. We then
compare results with Table 2 as the algorithm is de-
veloped with the goal of greater than 97% accuracy.

4 Spectral Angle Mapping

The Spectral Angle Mapper classification (SAM)
[17] is an automated method for directly comparing
image spectra to a known spectrum (usually deter-
mined in a lab or in the field with a spectrometer)
or an end member. This method treats both (the
questioned and known) spectra as vectors and cal-
culates the spectral angle, ω, between them. This
method is insensitive to illumination since the SAM
algorithm uses only the vector direction and not the
vector length. The result of the SAM classification is
an image showing the best match at each pixel. This
method is typically used as a first cut for determining
areas of homogeneous regions.

The goal is to find waveforms that are similar to
one another such that a signature could be deter-
mined and used in a search on non-training data.
In this case training data is defined as data that
has some known values however unknown to the
selection process. The known values are used to eval-
uate performance and indicate when the signature
process has completed the training process. Just
as primary schools use a grading level to measure
progress of a student, the ISODATA routine uses

Figure 3: A simple λ on λ plot to explain SAM [10].

some data metric to describe what it is attempting
to classify. The Spectral Angle (SA) is useful as it
describes the closeness of one vector to another. In
this case we have a reference vector from one of the
principal components selected, −→r reference vector,
and
−→
t target vector.

Rt(λn) is the target spectra for which the spectral
angle is to be calculated. This is the hyperpixel
data that contains the intensities per band for which
we are searching for a key to identify a subclass of
material. Rr(λn) is the reference spectra, or one of
the principal components that were selected priori.
In all cases the first sample selected is specific in
that it becomes Rr(λn).

r =
n∑
1

Rr(λn)2 (1)

is the sum of the squares for the reference hyper-
pixel and

t =

n∑
1

Rt(λn)2 (2)

is the sum of the squares or the reference vector.

We plot these vectors in 3D space however for
clarity and ease of referencing we demonstrate them
in 2D space assuming the reader understands the
inferred 3D plot. In finding Figure 3, we can see
that −→r and

−→
t are plotted starting at the origin.

It is note worthy here to explain that SAM is not
interested in the magnitude of the reflectance value
rather the angle between the two vectors. This makes
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Table 2: Manually selected truth confusion table, values are hyperpixel counts.

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) (M)

Light Media (A) 14 0 0 0 0 0 0 0 0 0 0 0 0
Light Stained (B) 0 17 0 0 0 0 0 0 0 0 0 0 0
Light Unstained (C) 0 0 8 0 0 0 0 0 0 0 0 0 0
Light Trash (D) 0 0 0 10 0 0 0 0 0 0 0 0 0
Medium Media (E) 0 0 0 0 31 0 0 0 0 0 0 0 0
Medium Stained (F) 0 0 0 0 0 22 0 0 0 0 0 0 0
Medium Unstained (G) 0 0 0 0 0 0 13 0 0 0 0 0 0
Medium Trash (H) 0 0 0 0 0 0 0 14 0 0 0 0 0
Dark Media (I) 0 0 0 0 0 0 0 0 49 0 0 0 0
Dark Stained (J) 0 0 0 0 0 0 0 0 0 45 0 0 0
Dark Unstained (K) 0 0 0 0 0 0 0 0 0 0 32 0 0
Dark Trash (L) 0 0 0 0 0 0 0 0 0 0 0 22 0
Unclassified (M) 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4: General aggregate signal shape of the four known classes.

SAM resilient to fluctuations in intensity due to poor
lighting control.

We calculate the dot product

A ·B =

n∑
1

Rr(λ n)×Rt(λ n) (3)

which gives the spectral angle in radians as

θ = cos−1

(
A ·B
r × t

)
(4)

Along with Rr(λn), θ becomes the SAM reference
value by which searches into the data set will attempt
to identify E. coli and other classified endmembers.

This approach allows for N λ bins and attempts to
minimize the fluctuation in lighting intensity. How-
ever SAM has limits as the resultant coefficient is a
single value, and then allowing for some percentage
of error, there exist the potential for the SAM to
spill over into the ranges of dissimilar endmembers.

4.1 Spectral Correlation Mapping

We introduce a further refinement to the ISODATA
method as the Spectral Correlation Mapper (SCM)
algorithm, Eq. (7). SCM is generated in parallel,
however is only conditionally evaluated when SAM
is unable to discriminate or has multi-correlations.
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r is the average of the iterative evaluations of 1 as
is t to 2.

r =

∑n
1 Rr(λn)2

count
(5)

is the mean sum of the squares for the reference
hyperpixel and

t =

∑n
1 Rt(λn)2

count
(6)

Then the means are calculated where count is
the number of samples in the signal. We now sum
the products of the mean adjusted elements of both
Rt(λn) and Rr(λn) arrays divided by the products
sum of the mean adjusted squares of both Rt(λn)
and Rr(λn).

Where α is formed as an angle (expressed in radi-
ans) describing the simularity between the reference
hyperpixel spectrum (Y) and the hyperpixel under
test (X). The SAM execution will generate results
that are over classified or miss-classified. Given the
shapes of the target signals, Figure 4, and the geo-
metric similarity with the coexistent end members
one can easily see how narrow the error budget is.

During the training process, the training data is
evaluated via the SAM algorithm to produce pure
spectral signatures. After an identified spectra has
been identified it is then referred to as an endmem-
ber. We must assume, even at these path lengths
the pixels will contain a variation of material sig-
natures. Specifically we can reasonably expect to
see our target bacteria and the expressed compo-
nents of the emerging bio-film, agar materials, and
expect random contaminations although efforts are
put forth to minimize these. Thus the hyperpixels
will contained a mixed signal and is subject to mixed
pixel aberrations in the signal construct.

α =

(∑n
1 Rt(λn)− t

)
× (
∑n

1 Rr(λn)− r)√(∑n
1 Rt(λn)× t

)2 × (
∑n

1 Rr(λn)× r)2
(7)

5 Implementation Details

The primary difference between the two methods
is that the SAM is a single angular relationship
along the horizontal axis; where SCM uses pairs
of deviations, e.g. x - x and y - y to qualify the
differences along both the horizontal and vertical

axis. Combining the two methods yields a higher
capacity to detect false positives.

As the training process progresses along the truth
hyperpixels, it will average the resulting SAMs and
SCMs yielding θ and α respectively. When the sys-
tem runs as a detector, e.g. with known signatures,
these averages will remain constant yielding the ba-
sis of the signature set, however in training mode
the system is seeking the final values.

Refer to Figure 5 for the following algorithm flow
description of the process. In both the learning and
detection processing, we load the SAM and SCM
coefficients by either calculating from the truth file
or loading from a previously calculated learning run.
Then entering a couple short loops, we exercise the
ω fit for both the SAM and SCM truth seeds. This
narrows the user input ω fit from typically 3 to 8
percent to a level that will independently resolve the
truth set without overlaps or over fitting. This is
shown in the flow chart as Do for SAM and Do for
SCM loops.

Next we loop for class intersections between the
SAM and SCM fits in order to narrow down to a
selection. This processing state is valid for both
training and detection. Given only one SAM fit
and one SCM fit and they both agree, we log the
selection in data and return the value to the caller
function. The caller function will then advance the
X,Y coordinate and begin the processing again. In
the case of truth processing we will see the next
logical hyperpixel in the truth list and in detection
we will see the next logical hyperpixel as the X or Y
value will have changed.

Assuming the next hyperpixel processing results
in an intersection count>1 then we look to narrow
the overfit selection by determining which class has
the closest fit where the SAM will converge to zero
for a perfect match and SCM will converge onto one.
In the flow chart θ represents the SAM fit value
while α represents the SCM fit value and ω is the
tolerance around zero or one.

The differences are initialized assuming class ‘A’
holds the closest fit. diff and sdiff are initialized per
Eqs. 8 and 9, respectively. The ∆ values are the
differences between the now class average divergence
from either zero or one and the hyperpixel under
test divergence.

diff =
∆θ

θ
(8)
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Figure 5: Detection Flow Chart used in signature development, validation, and detections.
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sdiff =

∣∣∣∣1− ∆α

α

∣∣∣∣ (9)

Then for each class B..L we logically compare
the same results with the previous difference value
selecting the one that is closest to either the SAM
or SCM convergence value.

The SAM logic states if diff> the class evaluation
of Eq. 8 then diff = the class evaluation else remains
unchanged. Where the SCM logic follows suit but is
looking for a difference in magnitude.

The final selection is done as if sdiff>diff then
the selection class is the smaller α otherwise its the
smaller θ class.

6 Results and Discussion

The two approaches above (SAM and SCM) are
blended into a single profile that provides adequate
discrimination of the sample’s components. This
approach has precedence as similar methods were ex-
plored by Fauvel [18]. This too mimics the findings
of Jin’s [9, 19] 80-20 rule where the SAM function
identifies 80% of the targets and the SCM is opti-
mized to pull in the remaining 20% with some error
in identification accuracy. These two algorithms
were independently developed in support of earth
science programs and integrated here to solve the
low noise low feature count found in a relatively flat
fielded microscopic field of view.

Data was collected in November 2012 at the Texas
Tech Health Sciences Center using the following envi-
ronment. The Texas Tech University Health Sciences
Center’s Cell Physiology and Molecular Biophysics
Imaging Center provided the following equipment
in a dark room environment. The microscope is an
Olympus TH4 - 100 and used 2 objective ends, 40X
for dry measurements and a 60x for wet measure-
ments. The wet imagery yielding the better imagery
and is used for this research. The HSI sensor is a
CRi Nuance FX HSI sensor system (Caliper Life
Sciences, Hopkinton, MA,USA) connects to a laptop
via USB connections. The room is light tight and
adjacent to a common area for specimen prepara-
tion. The scientific-grade CCD imager ( 1392 x 1040
effective pixels ) features a solid state liquid crystal
wavelength tuning element. The package is mounted
onto a chassis with a standard C-mount camera tube.
The CRi Nuance EX (450-900 nm) has a tunable
liquid crystal element that provides vibration free

control of wavelength selection. Vendor documented
accuracy is Bandwidth/8.

The stock Olympus light source (non NIST) is
used and the Nuance software is capable of flat field-
ing the illumination. Procedures outlined in the
vendor documentation were followed. All samples
are imaged in transmission mode [20] as most of the
literature suggest for the most useful images.

Using Nuance TM(Caliper Life Sciences, Hopkin-
ton, MA,USA) software (version 3.0.1.2), the hyper-
spectral microscope imagery was acquired and stored
in a proprietary format. Prior to image acquisition
all parameters are selected, Binning 1x1, Exposure
(auto optimized nominally 33 milliseconds), wave
lengths of interest 450-950 nm, and a full region of
interest (ROI). The spectral interval or mean band
width was set to the minimum of 10nm. After image
acquisition the proprietary cube was converted to
a series of TIFF files representing each slice of the
cube from 450-950 nm at 10nm steps. Using Image
J these TIFF files were converted to raw binary for-
mat stripped of any meta data and organized into a
hypercube format.

The SAM only processing yields a 67.0% successful
detection and classification rate on the truth data
as reported in Table 3. In looking at the isolated
effectiveness of the SCM algorithm we see in Table
4 there is a low yield of only 8.5%. However, in
joining the two implementations the resulting yield
combines to 99.2% as demonstrated in Table 5.

7 Conclusions

The combination of utilizing both a spectral angle
mapper and spectral correlation mapper proves ef-
fective to identify and isolate K12 E. coli from a
prepared microscopic slide while in platonic form.
Processing times for large imagery, approximately
1300 x 900 hyperpixels, remains painfully slow. With
recent multi-core desktop processor advancements
however observing in smaller sub-images offers ex-
cellent results. Even with the processing speed,
the turnaround time is better than the traditional
lab processing thus this may offer a pre-screening
method to be backed up by traditional laboratory
findings. Both the SAM and SCM algorithms are
easily implemented. Care must be exercised when
scaling the fit ranges as noise levels rise and or light-
ing conditions change.
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Table 3: SAM only, full spectrum, detections along X axis, truth along Y axis resulting in a success rate of 67.6%

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) (M)

Light Media (A) 14 0 0 0 0 0 0 0 0 0 0 0 0
Light Stained (B) 0 17 0 0 0 0 0 0 0 0 0 0 1
Light Unstained (C) 0 0 8 0 0 0 0 0 0 0 0 0 0
Light Trash (D) 0 1 1 8 0 0 0 0 0 0 0 0 0
Medium Media (E) 4 0 0 0 27 0 0 0 0 0 0 0 0
Medium Stained (F) 0 0 0 0 1 21 0 0 0 0 0 0 0
Medium Unstained (G) 0 0 0 0 2 0 11 0 0 0 0 0 0
Medium Trash (H) 0 0 0 0 0 1 0 13 0 0 0 0 0
Dark Media (I) 0 0 0 0 0 0 0 0 49 0 0 0 0
Dark Stained (J) 0 0 0 0 0 0 1 0 1 43 0 0 0
Dark Unstained (K) 0 0 0 0 0 0 0 1 0 2 29 0 0
Dark Trash (L) 1 1 1 1 0 0 0 0 1 0 2 20 0
Unclassified (M) 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4: SCM only, full spectrum, detections along X axis, truth along Y axis resulting in a success rate of 8.5%

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) (M)

Light Media (A) 14 0 0 0 0 0 0 0 0 0 0 0 0
Light Stained (B) 0 1 0 0 0 0 0 0 0 0 0 0 17
Light Unstained (C) 0 0 1 0 0 0 0 0 0 0 0 0 7
Light Trash (D) 0 1 1 8 0 0 0 0 0 0 0 0 10
Medium Media (E) 0 0 0 0 0 0 0 0 0 0 0 0 31
Medium Stained (F) 0 0 0 0 0 0 0 0 0 0 0 0 22
Medium Unstained (G) 0 0 0 0 0 0 0 0 0 0 0 0 13
Medium Trash (H) 0 0 0 0 0 0 0 0 0 0 0 0 14
Dark Media (I) 0 0 0 0 0 0 0 0 0 0 0 0 49
Dark Stained (J) 0 0 0 0 0 0 0 0 0 0 0 0 45
Dark Unstained (K) 0 0 0 0 0 0 0 0 0 0 0 0 32
Dark Trash (L) 0 0 0 0 0 0 0 0 0 0 0 0 23
Unclassified (M) 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 5: SAM SCM integeration, full spectrum, detections along X axis, truth along Y axis resulting in a 99.2%
success rate.

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) (M)

Light Media (A) 14 0 0 0 0 0 0 0 0 0 0 0 0
Light Stained (B) 0 17 0 0 0 0 0 0 0 0 0 0 1
Light Unstained (C) 0 0 8 0 0 0 0 0 0 0 0 0 0
Light Trash (D) 0 0 1 9 0 0 0 0 0 0 0 0 0
Medium Media (E) 0 0 0 0 31 0 0 0 0 0 0 0 0
Medium Stained (F) 0 0 0 0 0 22 0 0 0 0 0 0 0
Medium Unstained (G) 0 0 0 0 0 0 13 0 0 0 0 0 0
Medium Trash (H) 0 0 0 0 0 0 0 14 0 0 0 0 0
Dark Media (I) 0 0 0 0 0 0 0 0 49 0 0 0 0
Dark Stained (J) 0 0 0 0 0 0 0 0 0 45 0 0 0
Dark Unstained (K) 0 0 0 0 0 0 0 0 0 0 32 0 0
Dark Trash (L) 0 0 0 0 0 0 0 0 0 0 2 22 0
Unclassified (M) 0 0 0 0 0 0 0 0 0 0 0 0 0

8 Acknowledgements

We would like to thank Dr. Raul Matrinez-Zaguilan,
director of the imaging center, Texas Tech University
Health Sciences Center. Without his expert leader-
ship the technical aspects of the image acquisition
process this research would not have evolved in the
successful manner in which it did. Special thanks
to Raytheon’s Electro-Optical Innovations (EOI) Di-
vision, Richardson, Texas for loaning the camera
system and allowing unrestricted usage over at least
a two year period while I was in pursuit of a higher
degree. Raytheon’s support of continued and higher
education is without doubt a model for continued
American industrial success.

References

[1] Anna Luiza Brito, Livia Rodrigues Brito, Fernanda
Honorato, and et. al., (2013). Classification of Ce-
real Bars Using Near Infrared Spectroscopy and
Linear Discriminant Analysis Food Research Inter-
national, 51, 924-928.

[2] Economic impact of E. Coli on the Agricultural
Industry, http://www.newsflashenglish.com/english-
lessons/economic-impact-of-e-coli-on-the-
agricultural-industry (accessed September 15,
2016).

[3] Rahman, M. S. (2015). Hurdle technology in
food preservation, Minimally Processed Foods (Mo-
hammed Wasim Siddiqui and Mohammad Shafiur
Rahman, eds.), Food Engineering Series, Springer
International Publishing, pp. 17-33.

[4] Lothar Leistner and GrahameW. Gould, The hur-
dle concept, Hurdle Technologies, Food Engineering
Series, Springer US, 2002, pp. 17-28 (English).

[5] Fengle Zhu, Derong Zhang, Yong He, Fei Liu, and
Da-Wen Sun, Application of visible and near infrared
hyperspectral imaging to differentiate between fresh
and frozen-thawed fresh fillets, Food and Bioprocess
Technology 6 (2013), no. 10, 2931-2937 (English).

[6] M Bioucas-dias, Antonio Plaza, and E Caceres, An
Overview of Hyperspectreal Unmixing: Geometri-
cal, Statistical, and Sparse Regression Based Ap-
proaches, IEEE (2011), 1135-1138.

[7] G Girouard, A Bannari, A El Harti, and A
Desrochers, Validated Spectral Angle Mapper Algo-
rithm for Geological Mapping: Comparative Study
between Quickbird and Landsat, IEEE Geoscience
and Remote Sensing Letters.

[8] R. Ramanath and W.E. Snyder, Band selection us-
ing independent component analysis for hyperspec-
tral image processing, IEEE, 32nd Applied Imagery
Pattern Recognition Workshop, 2003. Proceedings.
(2003), 93-98.

[9] Jihao Yin, Yisong Wang, and Zhanjie Zhao, Optimal
band selection for hyperspectral image classification
based on inter-class separability, (2010), 1-4.

[10] Osmar Abilio, De Carvalho Junior, Renato Fontes
Guimaraes, Roberto Arnaldo, Trancoso Gomes, and
Ana Paula Ferreira, Spectral Multiple Correlation
Mapper, Geoscience and Remote Sensing Sympo-
sium (2006), 2762-2765.

[11] Bosoon Park, William R. Windham, Scott R. Ladely,
Prudhvi Gurram, Heesung Kwon, Seung- Chul Yoon,

Transdisciplinary Journal of Engineering & Science
ISSN: 1949-0569 online

Vol. 7, pp. 20-32, 2016



Timothy M. Horton, Matthew Kay, A. Ertas, D. Tate
A Hyperspectral Signature Method for Identifying E. coli: Impact on Public Health 31

Kurt C. Lawrence, Neelam Narang, and William
C. Cray, Classification of Shiga toxin-producing es-
cherichia coli (STEC) serotypes with hyperspectral
microscope imagery, Sensing for Agriculture and
Food Quality and Safety IV (SPIE) 8369 (2012),
83690L-83690L-13.

[12] Sen Jia, Zhen Ji, and Yuntao Qian, Band selection
based hyperspectral unmixing, (2009), 303-306.

[13] Xiuping Jia, Cluster-Space Hyperspectral Data Rep-
resentation for Mixed Pixel Analysis, School of Elec-
trical Engineering, University College, The Univer-
sity of New South Wale (2000), no. 3, 2167-2169.

[14] Paul L Rosin, Robust Pixel Unmixing, Transform
39 (2001), no. 9, 1978-1983.

[15] Richards, J. A. (2004)Cluster-Space Classification:,
Information Sciences 00, no. C, 07-410.

[16] Jain, A. K., Murty, M. N., and Flynn, P. J. (2000).
Data Clustering: A Review, ACM Computing Sur-
veys 31 no. 3.

[17] Seldon O Morgan, Richard B Gomez, William E
Roper, and Phillips Hall Suite, Squeezed signa-
ture analysis hyperspectral classification, Image
(Rochester, N.Y.) (2003).

[18] Mathieu Fauvel, Student Member, Jón Atli Benedik-
tsson, Jocelyn Chanussot, Senior Member, and Jo-
hannes R Sveinsson, Spectral and Spatial Classi-
fication of Hyperspectral Data Using SVMs and
Morphological Profiles, 46 (2008), no. 11, 3804-3814.

[19] Yaochu Jin and Bernhard Sendho, Pareto-Based
Multiobjective Machine Learning : An Overview
and Case Studies, IEEE Transactions on Systems,
Man, And Cybernetics 38 (2008), no. 3, 397-415.

[20] Mehrube Mehrubeoglu, Paul V. Zimba, Lifford L.
McLauchlan, and Ming Y. Teng, Spectral unmixing
of three-algae mixtures using hyperspectral images,
2013 IEEE Sensors Applications Symposium Pro-
ceedings (2013), 98-103.

About the Authors

Dr. T. Horton, while working in the defense indus-

try, he received his masters and Ph.D. from Texas Tech

University, Lubbock Texas. For his dissertation thesis,

Dr. Horton explored the world of microbiology and how

engineering can further both fields in a transdispinary

way. His work has led to the development of efficient

methods to develop hyperspectral signatures in many

areas where both low and high contrast target media

should be expected. Having greater than 30 years of

industry experience he has concentrated studies in real-

time systems, tracking systems, radar and graphical user

interfaces that support his fellow military active duty

members. He spends his free time with his four children

who are very active in scouts. Dr. Horton is giving back

to his community by being very active in scouting STEM

initiatives with the hopes of enabling and empowering

the largely untapped technical resource that is bottled up

in American female students, of which his two daughters

are actively engaged.

Dr. Matthew Kay received his Ph.D. in Biomedical

Sciences from Texas Tech University, and his Masters in

Biology from Texas State University. He is a Postdoctoral

Fellow performing research at the Naval Medical Research

Center in San Antonio, Combat Casualty Care Division,

at Fort Sam Houston. He is a member of the American

Society of Microbiology. Dr. Kay has contributed to

several book chapters and authored several papers. He has

received several awards and honors for his contributions

to the fields of phage biology and bacterial biofilms.

Dr. Atila Ertas, Professor of Mechanical Engineering,

received his masters and Ph.D. from Texas A&M Univer-

sity. He is a Senior Research Fellow of the IC2 Institute

at the University of Texas Austin, a Fellow of American

Society of Mechanical Engineers (ASME), a Fellow of

Society of Design and Process Science (SDPS), and a

Fellow and honorary member of The Academy of Trans-

disciplinary Learning & Advanced Studies (TheATLAS).

Transdisciplinary Journal of Engineering & Science
ISSN: 1949-0569 online

Vol. 7, pp. 20-32, 2016



Timothy M. Horton, Matthew Kay, A. Ertas, D. Tate
A Hyperspectral Signature Method for Identifying E. coli: Impact on Public Health 32

He is also an honorary member of International Center for

Transdisciplinary Research (CIRET), France. Dr. Ertas

has earned both national and international reputation in

engineering design. Dr. Ertas is the author of a number

of books, and technical papers that cover many engineer-

ing technical fields. Dr. Ertas’ contributions to teaching

and research have been recognized by numerous honors

and awards. He has been PI or Co-PI on over 40 funded

research projects. Under his supervision 194 MS and

Ph.D. graduate students have received degrees.

Dr. Derrick Tate, is an Associate Professor and Found-

ing Head of the Department of Industrial Design at Xian

Jiaotong-Liverpool University. He aims to impact society

through bringing design thinking to areas of strategic

importance: assessing the innovative potential of design

ideas, developing sustainable approaches for building sys-

tems, transportation, and manufacturing; and broadening

participation in innovation. Dr. Tate has carried out

his research activities at the two ends of the research

spectrum where they will have the greatest impact: fun-

damental research that provides a science base for the

future of entrepreneurial engineering design as well as

the application of design theories and tools to technology

innovation. His recent projects include working with West

Texas entrepreneurs on the development of innovative and

sustainable designs and a US-Tanzania Workshop: Ad-

vancing the Structural Use of Earth-based Bricks, funded

by NSF. He received a B.S. in Mechanical Engineering

degree from Rice University. His S.M and Ph.D. degrees

in Mechanical Engineering are from MIT in the areas of

manufacturing and design, respectively.

Transdisciplinary Journal of Engineering & Science
ISSN: 1949-0569 online

Vol. 7, pp. 20-32, 2016


