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susceptible to a wide-variety of internal and external attacks. These include improper authentication

and access control, distributed denial of service (DDoS), sybil, spoofing, spying, masquerading, etc.
Securing networks against these attacks requires an immutable, transparent, traceable, and distributed
computing security model, that has minimum overheads. Most of these characteristics are fulfilled via
the use of blockchains, which assist in the low-complexity deployment of security and hashing models.
But the delay needed to scale these blockchains increases exponentially w.r.t. chain length, due to which
researchers split the main blockchain into multiple sidechains. A wide variety of models are proposed by
researchers for sidechain formation, and most of them are consensus dependent, which limits the scala-
bility. Moreover, the energy needed to mine blocks for these sidechains depends directly on the consensus
model, encryption model, hash rules, and length of the blockchain. Thus, models proposed for sidechain
formation are context-specific and have limited scalability performance when used for multiple blockchain
types. To overcome these limitations, and maintain high security performance, this text proposes the design
of a Low-power hybrid Consensus Method for QoS-aware Sidechain-based IoT Networks via Augmented
Bioinspired computing Models. This method uses a combination of Proof-of-Work (PoW), Proof-of-Stake
(PoS) and Proof-of-Authority (PoA) based consensus models, which assist in reducing its mining delay. The
PoW model allows the selection of nodes with higher performance, PoS allows the selection of nodes with a
higher stake, and PoA ensures better control of IoT devices. Selection of these consensus models is done
via the use of an Improved Genetic Algorithm (IGA) model, that evaluates the power needed for mining,
and minimizes it using a rule-based method. This is combined with a sidechain creation model, that assists
in tmproving QoS performance via dynamically splitting the main blockchain into performance-specific
sidechains. These sidechains are categorized into low-power, low-delay, and high-throughput sidechains,
which are formed via Elephant Herding Optimization (EHO) model. Due to the combination of IGA for

S ecurity is one of the primary issues in any wireless network deployment, because, wireless nodes are
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consensus selection, and EHO for sidechain creation, the proposed model is able to reduce the energy needed
for mining by 15.4% when compared with various state-of-the-art models. It is also able to improve mining
speed by 5.8%, while maintaining high security performance under different IoT Network attacks. Due
to this performance enhancement, the proposed model is capable of being deployed for a wide variety of
low-delay healthcare IoT, high-throughput industrial IoT, and low energy home IoT application deployments.

Keywords: 10T, security, QoS, IGA, EHO, mining, sidechain, PoS, PoW, PoA, attacks, delay, energy,
consensus.

1 Introduction

Modeling low power, and high security IoT deployments is a multidomain task that involves consensus
selection, miner resource optimization, selection of mining strategy, selection of block structure, etc. A
typical PoWbased consensus model for blockchain mining is depicted in Figure 1, wherein PoW puzzles are
defined and solved via different high-capacity miner nodes [1].

Define PoW Puzzle

Block Received

PoW Puzzle
Block Verification?

Identified and
Defined?
No Yes Yes
Accept Block Create Block
A
Reject Block -+ Broadcast
PoW Mechanism at Receiver & —e-Miner PoW Mechanism at Sender

Figure 1: A typical PoW consensus model for blockchain mining.

These solutions are broadcasted onto the network, and are selected based on length of resulting
blockchains. This process allows the model to improve verification capability for blocks, by accepting the
block only when more than 51% of nodes agree upon the broadcasted solutions. The delay needed to add a
block (a.k.a. mine a block) to PoW powered blockchain is calculated via equation 1 as follows,

D(M) = Lp*D(R)+ L *D(V) + (Lp — 1) * D(H) + D(W)... (1)

Where, D(M), D(R), D(V), D(H), and D(W) represents delays needed for mining, reading, verification,
hashing and writing a block to the blockchain, while L represents length of the blockchain. Based on this
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equation, it can be observed that the delay needed for mining exponentially increases w.r.t. length of the
chain, thus making PoW impractical for large-length blockchains that are needed for real-time IoT network
deployments. To overcome this issue, and design a highly useful IoT deployable model, a wide variety of
consensus and sidechaining models are proposed by researchers [2, 3, 4]. These models are discussed in
the next section of this text, wherein their nuances, advantages, limitations, and future research scopes
are reviewed and compared. Based on this discussion, it can be observed that very few of these models
have low-power capabilities, while even fewer of them propose the development of dynamic context-aware
sidechains. To overcome these limitations, section 3 proposes the design of LCMQSINABM, which is a Low-
power hybrid Consensus Method for QoS-aware Sidechain-based IoT Networks via Augmented Bioinspired
Computing Models. The performance of this model is compared in section 3, wherein end-to-end delay,
energy consumption, and throughput are evaluated for different state-of-the-art consensus and sidechaining
methods. Finally, this text concludes with some interesting observations about the proposed model and
recommends various methods to further improve its performance.

2 Material and Methods

2.1 Literature Review

A wide variety of blockchain based IoT models are proposed by researchers. For instance, work in [5, 6]
proposes Blockchain Based Hierarchical Tree Layered Fog-IoT (BFIM), and fuzzy hashes for enhancing
blockchain security. But these models are highly context-sensitive and cannot be scaled. Thus, work in
[7] proposes a Dynamic Device Management framework for Application-Oriented Block Generation under
Consortium Blockchain-Based IoT Systems. This model is highly scalable and has better performance for a
wide variety of IoT network deployments. Similar models are proposed in [8, 9, 10], wherein researchers have
used Blockchain-Based Access Control for IoT (BorderChain), Optimized Blockchain based Software Defined
Network Framework (Smart Block SDN), and blockchain based Market for IoT Network models. These
models define application specific frameworks for blockchain deployments, and thus are highly effective
under specialized network conditions. Extended models that use Lagrange Coded Private Blockchain
(LCPB) [11], Q-Learning for blockchain optimization (QL) [12], resource allocation via Reinforcement
Learning model (RL) [13], blockchain Gateways for resource constrained applications [14], and mobile
edge computing-based blockchains [15], which allow the blockchain models to extend their general-purpose
performance under different scenarios.

Privacy models for better applicability of IoT devices are proposed in [16, 17, 18], wherein Privacy-
Preserving and Secure Framework (PPSF), Ethereum based blockchain, and double layered blockchain for
access control (DLBAC) are discussed by researchers. These models assist in improving mining efficiency
via use of augmented blockchain structures. Extensions to these models are presented in [19, 20, 21],
wherein security, privacy, access control, IoT fault detection via Machine Learning, and Trusted Data
Sharing with Privacy Protection are proposed by researchers. These models must be extended via the work
in [22, 23, 24, 25], wherein use of Artificial Intelligence (AI), trust-based models, transaction prediction,
and smart grid-based access control management models are discussed. MIMO based antenna models
are discussed in [26, 27, 28] and [29, 30, 31], wherein researchers have proposed the use of Microstrip
Antenna Arrays, Substrate Integrated Waveguides, Low-Noise Stable Broadband Microwave Amplifiers,
Magnetically Scannable Slotted Waveguide Antennas, Leaky Wave Antennas, and Anisotropic and di
electric antennas which can be used for improving communication performance for real-time radios under
different network conditions. These models assist in improving miner performance via integrating multiple
optimization techniques while maintaining low complexity of processing and consensus. But very few of
these models assist in the design of QoS-aware methods that can be used with high security, which limits
their performance. To overcome this limitation, the next section proposes the design of a Low-power hybrid
Consensus Method for QoS-aware Sidechain-based IoT Networks via Augmented Bioinspired Computing
Models. The performance of this model is evaluated in terms of various QoS metrics, and compared with
various state-of-the-art models under different communication scenarios.
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2.2 Design of the proposed Low-power hybrid Consensus Method for QoS-aware
Sidechain-based loT Networks via Augmented Bioinspired computing
Models

From the literature review, it was observed that a very few models were available for low-energy, and
high-security QoS-aware IoT Network deployments. Thus, to overcome this issue, a novel Low-power hybrid
Consensus Method for QoS-aware Sidechain-based IoT Networks via Augmented Bioinspired computing
Models is proposed in this section. The proposed model initially uses a consensus selection method via
the Improved Genetic Algorithm (IGA), which assists in selecting between PoW, PoS and PoA consensus
models. This selection is done based on user requests, and considering the delay needed for mining blocks
for the current blockchain configuration. The IGA model is extended via EHO, which is used for the
creation of sidechains for application-specific requirements. The overall flow of this model is depicted in
Figure 2, wherein both IGA and EHO can be observed to be working in tandem to continuously optimize
the security and QoS performance of the IoT blockchain network.
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Figure 2: Owverall flow of the proposed model.
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From the flow, it can be observed that the model initially analyzes current blockchain, and its consensus
parameters. These parameters are evaluated via EHO and IGA models, which assist in the selection of
consensus models, QoS metrics, and security performance via efficiently creating sidechains. The selected
consensus method along with sidechain configuration is given to a performance checker model, which assists
in the final deployment of blockchains in the IoT network.

To simplify the design process, the model is segregated into different subparts, and each of these parts
is discussed in different sub-sections of this text.

2.3 Design of the IGA Model for selection of QoS-aware consensus method

Consensus models allow blockchain networks to decide whether a block should be added to the blockchain
or not. To perform this decision, a wide variety of consensus mechanisms are proposed by researchers,
and it was observed that PoS, PoW and PoA models have better performance than others. The proposed
model is able to reduce the delay needed for consensus by selecting most suitable consensus parameters.
These parameters include a nonce range for PoW, stake needed for consensus in PoS, and access levels in
PoA, in order to achieve faster consensus. To perform this task, the following IGA process model is used,

o Initialize IGA parameters,

— Number of iterations (N;)
— Number of solutions (Nj)
— Learning rate (L,)

— Estimated number of blocks to be added in this chain (Bygded)

o Initially mark all chains as ‘to be modified’

e For each iteration in 1 to N;

— For each solution in 1 to Ny
x If this solution is marked as ‘not to be modified’, then go to the next solution.
x Else, generate a new solution via the following process,

- Evaluate a minimum and maximum value of nonce range via equation 2

Min(nonce)=STOCH(1,Max(Int)),
Maz(nonce)=STOCH (Min(nonce),Maz(Int)). .. (2)

Where, STOCH, Maz(Int) represents a stochastic Markovian process, and maximum value of Integer range
respectively.
o Evaluate maximum stake levels needed to add these blocks via equation 3,
Mazx(Stake)=60 « L_r...(3)
e Evaluate maximum authority levels which must be granted to these blocks via equation 4,
Maz(Auth)=L_r«L(Auth). .. (4)

Where, L(Auth) represents total authority levels available in the IoT deployment. These levels include read
authority, write authority, modify authority, etc.

o Identify L_1*Bgggeq number of nodes from the list of nodes, and start addition of blocks to the
blockchain

e Use the nonce range, stake level, and authorization levels from equations 2, 3, and 4; and mine B,44eq
blocks.
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e Calculate the delay needed to mine these blocks via equation 1, and evaluate solution fitness via
equation 5 as follows,

Badded

(5)

j=1

B Evaluate fitness for each solution, and then calculate fitness threshold via equation 6 as follows,

N, L
i=1 8

B Solutions that have fitness more than f;;, are marked as ‘to be modified’, because their mining delay
is higher than others, while remaining solutions are marked as ‘not to be modified’

B Based on the fitness values of solutions which are marked as ‘to be modified’, evaluate new learning
rate via equation 7,

(M(S) — NM(S) 7)
Max(M(S), NM(S))

New(L,) =L, * |1+

Where, M (S) and NM(S) represents the number of solutions which are marked as ‘to be modified’,
and the number of solutions which are marked as ‘not to be modified’

Based on this new value of L,, values of stake, authority, and a number of nodes are modified in
each iteration. At the end of the last iteration, identify the solution with minimum fitness, and use its
parameters for consensus.

Based on this process, ranges for the nonce, maximum stake, and maximum authority levels are decided.
These ranges are used for mining newer blocks, which assists in the continuous optimization of consensus
delays. For any new requests, these ranges are used, and blocks are added to the blockchain. While adding
new blocks, an EHO model is activated, which assists in the creation of security and QoS-aware sidechains
for underlying IoT network deployment. The design of this model is discussed in the next sub-section of
this text.

2.4 Design of the EHO Model for Creation of Security and QoS-aware Sidechains

The EHO model assists in dividing the current blockchain into sidechains, which are used for QoS and
security-aware operations. This model works on a split and merge process, which assists in either dividing
the current blockchain into different parts or merging the current sidechain with central blockchain. This
model is activated as soon as a pre-set number of blocks are added to the blockchain. This pre-set number
is evaluated via equation 8 as follows,

Nee [
N(Blocks)EHO:z L
i=1

> N 8)

Where, Ny, and L; represent a current number of sidechains, and the length of each sidechain respectively.
The EHO model works via the following process,

« Initialize parameters of EHO model,

— Total EHO iterations (NFHO)
— Total EHO herds (NFHO)
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— Learning rate of the EHO model (LFHO)

e To start with, mark all herds as ‘to be changed’

o For every EHO iteration in 1 to NFH©

— For every EHO herd in 1 to NFHO
x Check if this herd needs to be changed, if not, then go to the next herd.
* Else, Change this herd’s internal parameters via the following process,

+ Stochastically select a chain from current list of sidechains, and initiate stochastic
requests for adding blocks to this chain.

+ Divide these requests into malicious and normal requests, and evaluate delay needed to
add a block to the chain under normal and malicious requests via equations 9 and 10 as
follows,

ZMrequests t _ t
j=1 end; strat;

D(Malicious) = 9
( ) M'r‘equests ( )
N, ts
e ten i ts rat;
D(Normal) = 2 & el (10)
Nrequests
Mrequests E _ El
E(Malicious) = 2i=i i starti end (11)
requests
N,
. requests ES art, — Een )
E(Normal) = 2z tarts di (12)
Nrequests

Where Fgtqrt and Ee,q represent mining start and completion energy levels in the mining nodes. Similarly,
evaluate throughput and packet delivery ratio (PDR) during mining via equations 13 to 16 as follows,

Myrequests

R.(P);
T(Malicious) = Z D(M) :fg\/[)Z -
= requests
Nreque:sts
T(Normal) = ; D(N) * Nyeguests "
M. ts
N reques Rm(P)z
PDR(Malicious) = =
i:zl Mrequests * Tl’(P)z
Nreguests
P .
PR Normal) - Ry (P); (16)

Tx(P>z * Nrequests

i=1
Where, Tz(P) and Rx(P) represents total number of packets transmitted and received during the mining
process. These metrics are combined to form an approximate security level for the current herd via equation
17 as follows,
D(Normal) + E(Normal) + T (Malicious) + PDR(Malicious)
D(Malicious) E(Malicious) T (Normal) PDR(Normal)
4

Using these metrics, a herd fitness value is evaluated via equation 18 as follows,

SL; = (17)
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[Zf—\fl SLi— Y05 woes
Ng
[D(Normal) — D(Malicious) n E(Normal) — E(Malicious)
D(M) E(M)
T(Malicious) — T(Normal)) PDR(Malicious) — PDR(Normal)

* T(Normal) + PDR(Normal) }

Based on this evaluation for each herd, a herd-level fitness threshold is evaluated via equation 19 as follows,

fEHo

(18)

1 Np
fthzﬁh*izzlfhi*Lr (19)

Each herd fitness is checked, and compared with f;, and herds with fitness more than threshold are marked
as ‘to be changed’, while others are marked as ‘not to be changed’.

The ‘Matriarch’ herd is identified as the herd with minimum fitness, which assists in continuously updating
EHO learning rate via equation 20 as follows,

Ny ld(LEHO)
New(LEHO) = Min | | fEHO | « S pmr——
h

=1 i=1

0 (20)

After completion of NFHO

i iterations, the herd with minimum fitness is selected as the ‘Matriarch’ herd,
and its QoS and security levels are compared with the current blockchain’s performance metrics. This
comparison can be observed from Table 1, where C and MZH© represents current blockchain’s levels and

EHO Matriarch levels respectively.

Table I: Rules to create new sidechains or merge with existing central blockchain.

QoS Levels SL Value Merge and Split decision
Cz(QoS) > MEHO(QoS) iB Sé‘ 30 (SL) Perform blockchain merge operations
Cz(QoS) = MEH2(QoS) iBSégo (SL) No change in blockchain
Cz(QoS) < MEHO(QoS) iBSEéP?O (L) Perform blockchain split operation
Cg(QoS) > MEHO (Q0S) iB Sé‘ 30 (SL) Perform blockchain merge operations
Cz(QoS) = MEHO(QoS) iB Ségo (SL) Perform blockchain merge operations
Cz(QoS) < MEH9(QoS) iBS,fQO (SL) Perform blockchain split operation
Cg(QoS) > MEHO(Q0S) gBIE/;%‘?O (SL) Perform blockchain split operation
Cg(QoS) = MEHO (Q0S) 231(;530 (SL) Perform blockchain split operation
Cz(Q0S) < MEHO(QoS) 231(;530 (L) Perform blockchain split operation
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To perform blockchain splits, the following process is used,

e Divide the current blockchain into 2 equal parts and evaluate SL for both of these parts.

o Based on this evaluation, evaluate the selection ratio via equation 21,

SLpartg

S(Ratio) = 39
party

(21)

Where, SLpare, and SLpare, represents levels of security for part 1 and part 2 of the blockchain
respectively.

o If S(Ratio)>1, then chain 1 is selected as the main blockchain, else chain 2 is used as main blockchain,
and new blocks are added to the selected chains.

To perform blockchain merging identify sidechain with SL ~ 1, and use it to merge the current blockchain.
Using these decisions, blockchains are either split or merged with other chains. The performance of this
model is evaluated in terms of delay, energy consumption, throughput and PDR; and is compared with
various state-of-the-art methods. This performance is discussed in the next section of this text.

3 Result Analysis and Comparison

The proposed LCMQSINABM model uses a combination of QoS and security-aware models in order to
improve consensus performance under various scenarios. Apart from this, the model is capable of improving
security performance via the use of sidechain-based IoT Network deployments. To evaluate the performance
of the proposed model, its QoS metrics are compared with QL [12], RL [13], and DL BAC [18]. These IoT
networks use blockchain and other related technologies to improve the security and QoS performance of
the underlying network. All these models were tested via the following standard IoT Network parameters
(see Table 2).

Based on IoT and nodes configuration, a number of nodes varied between 500 to 5000, and their average
QoS performance was evaluated for a different number of communications. This assists in evaluating its
QoS performance. To identify its security performance, attacking nodes were varied between50 to 500 for
worm hole (WH), man in the middle (MITM) and distributed denial of service (DDoS)attacks. During
attacks, average of QoS metrics including end-to-end communication delay (D), energy consumption (E),
delay jitter (JD), packet delivery ratio (PDR) and throughput (T) were evaluated.

Initially, the network’s QoS performance was evaluated without any attacks, and compared with QL
[12], RL [13], and DL BAC [18] models. This performance was estimated by varying number of nodes
between 500 to 5000; and evaluating QoS metrics for different number of communications (NC). As per
this evaluation strategy, values for end-to-end delay (D) for different models is tabulated in Table 3.

Based on the average end to end delay performance, it can be observed that the proposed model is 9.5%
faster than QL [12], 15.4% faster than RL [13], and 18.3% faster than DL BAC [18] for different number of
blockchain communication requests. This is due to the inclusion of delay while selection of miner nodes and
selection of consensus models. Similar observations are done for energy requirements, and can be observed
in Table 4.

Based on the average energy consumption performance, it can be observed that the proposed model
needs8.3% lower energy than QL [12], 25.6% lower energy than RL [13], and 10.5% lower energy than DL
BAC [18] for the different number of blockchain communication requests. This is due to the inclusion of
energy levels while selecting of miner nodes and the selection of consensus models. Similar observations are
done for throughput achieved during the mining process and can be observed in Table 5.

Based on the average throughput performance, it can be observed that the proposed model is able to
achievel6.8% higher throughput than QL [12], 15.4% higher throughput than RL [13], and 0.5% higher
throughput than DL BAC [18] for different number of blockchain communication requests. This is due
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to inclusion of throughput while selection of miner nodes and selection of consensus models. Similar
observations are done for packet delivery ratio during mining process, and can be observed in Table 6.

Based on the average packet delivery ratio performance, it can be observed that the proposed model is
able to achieve 6.5% better PDR than QL [12], 6.75% better PDR than RL [13], and 5.4% better PDR than
DL BAC [18] for a different number of blockchain communication requests. This is due to the inclusion of
PDR while selecting of miner nodes and the selection of consensus models. These evaluations are extended
for a different number of attacks in the network, and are estimated by a varying number of attacker
(NA) nodes between 50 to 500; and estimating the QoS values. As per this evaluation strategy, values for
end-to-end delay (D) for different protocols under WH, DDoS, and MiTM is tabulated in Table 7.

Based on the average end-to-end delay performance, it can be observed that the proposed model is able
to achieve 10.5% faster performance than QL [12], 15.4% faster performance than RL [13], and 14.1% faster
performance than DL BAC [18] for a different number of blockchain attack requests. This is because the
underlying model uses security levels during the selection of blockchain split and merge processes. Similar
observations are done for energy performance, this can be observed for WH, DDoS and MiTM attacks in
Table 8.

Based on the average energy consumption performance, it can be observed that the proposed model
is able to achieve 9.4% lower energy consumption than QL [12], 18.2% lower energy consumption than
RL [13], and 18.1% lower energy consumption than DL BAC [18] for the different number of blockchain
attack requests. This is because the underlying model uses security levels during the selection of blockchain
split and merge processes. Similar observations are done for throughput performance, this performance is
averaged for DDoS, MITM and WH attacks; and can be observed in Table 9.

Based on the average throughput performance, it can be observed that the proposed model is able to
achieve 20.5% better throughput than QL [12], 20.8% better throughput than RL [13], and 25.4% better
throughput than DL BAC [18] for the different number of blockchain attack requests. This is because the
underlying model uses security levels during the selection of blockchain split and merge processes. Similar
observations are done for packet delivery rate (PDR) performance, this performance is averaged between
MITM, DDoS and WH attacks; and can be observed in Table 10.

Based on the average packet delivery ratio performance, it can be observed that the proposed model is
able to achieve 29.6% better PDR than QL [12], 32.5% better PDR than RL [13], and 26.1% better PDR
than DL BAC [18] for the different number of blockchain attack requests. This is because the underlying
model uses security levels during selection of blockchain split and merge processes. Thus, the proposed
model is able to improve QoS performance even under different attack types, thus making it useful for a
wide variety of IoT deployments.

4 Discussion and Conclusion

The proposed model initially combines different consensus models via IGA process, and also uses an
integrated EHO model for improvement of sidechain selection capabilities. Due to this, the proposed model
is able to outperform various state-of-the-art methods in terms of QoS metrics when compared under
different attack and non-attack scenarios. Upon evaluating the performance of the proposed model, it was
observed that it is 9.5% faster than QL [12], 15.4% faster than RL [13], and 18.3% faster than DL BAC
[18] for a different number of blockchain communication requests, while, requiring 8.3% lower energy than
QL [12], 25.6% lower energy than RL [13], and 10.5% lower energy than DL BAC [18], thus making it
highly useful for low-delay and low-energy IoT deployments. Similar performance was observed for PDR
and throughput performance under different communication scenarios. The model was also tested under
different types of attacks, and it was observed that the proposed model is able to achieve 10.5% faster
performance than QL [12], 15.4% faster performance than RL [13], and 14.1% faster performance than DL
BAC [18] for a different number of blockchain attack requests, while, it was able to achieve 20.5% better
throughput than QL [12], 20.8% better throughput than RL [13], and 25.4% better throughput than DL
BAC [18] for similar attack requests. Due to such a high-QoS and high-security performance, the proposed
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model is capable of being deployed for a wide variety of IoT networks. In the future, the performance of
this model must be validated under larger IoT networks, with a greater number of attacks. Furthermore,
bioinspired models must be replaced with deep learning models for further improving selection capabilities
under different network scenarios.

Table 2: Configurations for IoT network and nodes.

IoT Network Parameter Standard value wused for
evaluation

Model of propagation Two Ray Ground

MAC Protocol 802.16

Interface queue type Priority queue with drop tail

Antenna Type Omni directional antenna

Number of IoT Nodes 500 to 5000

Routing protocol used for | AOMDV

comparison

Network Size for [oT deployment | 2000m x 2000 m

Idle mode power 4mW
Receiving mode power 4AmW
Transmission mode power gmW
Sleep mode power 0.004mW

Transition mode power from | 0.8mW
Sleep to Wake up

Time needed to perform | 0.02s
transitions

Initial energy levels of [oT nodes | 4000 mW

ISSN: 1949-0569 online Vol. 13, pp. 187-204, 2022



Shital Agrawal and Shailesh Kumar

Design of a Low-Power Hybrid Consensus Method for QoS-aware Sidechain-Based IoT Networks via Augmented
Bioinspired Computing Models

198

Table 3: Average end-to-end delay for different blockchain requests.

NC D (ms) D (ms) D]?A(]IBHZ)C D (ms)
QL [12] RL [13] [18] Proposed
250 0.94 1.07 1.18 0.85
300 1.04 1.17 1.28 091
350 1.13 1.24 1.35 0.97
400 1.16 1.29 1.41 1.01
450 1.21 1.36 1.49 1.06
500 1.29 1.45 1.60 1.16
625 1.37 1.63 1.87 1.39
750 1.61 2.12 2.43 1.81
1000 227 2.77 3.06 221
1125 2.81 3.16 343 247
1250 2.98 3.39 3.73 2.71
1375 323 3.81 4.21 3.05
1500 3.75 435 4.76 3.43
1750 422 4.79 5.28 3.83
2000 4.55 5.44 5.98 4.18
2500 4.64 5.64 6.15 426

Table 4: Average energy consumption for different blockchain requests.

NC E (mJ) E (mJ) E (mJ) E (mJ)
QL [12] RL [13] | DL BAC [18] | Proposed
250 2.16 3.49 3.15 2.33
300 2.65 3.93 3.47 2.54
350 2.77 4.12 3.64 2.68
400 291 4.36 3.86 2.85
450 3.09 4.64 4.09 3.01
500 3.29 4.88 4.29 3.14
625 342 5.07 4.45 327
750 3.56 5.27 4.63 3.40
1000 3.70 5.46 4.82 3.55
1125 3.82 5.75 5.12 3.77
1250 4.08 6.25 5.52 4.05
1375 4.51 6.60 5.73 4.18
1500 4.57 6.59 5.73 4.15
1750 4.49 6.65 5.39 3.73
2000 4.70 6.88 5.20 3.46
2500 491 7.06 5.33 3.52
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Table 5: Average throughput performance for different blockchain requests.

e | T6ops) | Tabps) | LR T (k)
QL [12] | RL[13] [18] Proposed
250 | 31790 | 33216 | 38417 | 38728
300 | 32157 | 33480 | 38700 | 39008
350 | 32289 | 33688 | 389.67 | 39296
400 | 32553 | 33992 | 39317 | 39656
250 | 32875 | 34304 | 39667 | 40008
500 | 33154 | 34592 | 40009 | 40344
625 | 33433 | 34880 | 40351 | 40680
750 | 33701 | 35168 | 40684 | 41016
1000 | 33990 | 35456 | 41017 | 41352
1125 | 34269 | 35744 | 41351 | 41688
1250 | 34547 | 36032 | 41684 | 42024
1375 | 34826 | 36328 | 42017 | 42360
1500 | 351.05 | 36624 | 42351 | 42696
1750 | 35383 | 36912 | 42684 | 43032
2000 | 35662 | 37193 | 43013 | 43363
2500 | 35941 | 37474 | 43341 | 43693

Table 6: Average packet delivery ratio performance for different blockchain requests.

0,

NC | PDR(%) | PDR (%) 11;2}}3%&) PDR (%)

QL [12] RL[13] [18] Proposed
250 76.87 76.64 77.50 83.02
300 77.76 7723 78.07 83.63
350 78.08 77.71 78.60 84.23
400 78.72 78.42 79.32 85.00
450 79.50 79.14 80.04 85.75
500 80.17 79.80 80.71 86.48
625 80.84 80.47 81.38 87.20
750 81.52 81.14 82.06 87.91
1000 82.20 81.81 82.73 88.64
1125 82.87 82.48 83.40 89.36
1250 83.54 83.15 84.08 90.08
1375 8421 83.81 84.76 90.80
1500 84 .89 84 .48 85.43 91.52
1750 85.56 85.15 86.10 92.25
2000 86.24 85.82 86.78 92 .98
2500 86.91 86.47 87.44 93.69
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Table 7: Average end-to-end delay for different attack types.

D (ms)
NA D (ms) D (ms) DL D (ms)
QL [12] | RL[13] BAC Proposed
[18]
25 1.28 1.43 1.38 1.10
50 1.39 1.53 1.48 1.18
75 1.48 1.61 1.55 1.24
125 1.54 1.68 1.63 1.31
200 1.63 1.79 1.75 1.40
250 1.75 1.98 2.00 1.55
275 1.99 241 2.46 1.86
300 2.54 3.09 3.10 2.36
325 3.29 3.74 3.68 2.89
350 3.78 4.16 4.08 3.25
375 4.08 4.58 4.51 3.56
400 4.56 5.17 5.08 4.00
425 5.19 5.82 5.71 4.51
450 5.78 6.47 6.33 5.02
475 6.42 7.13 6.92 5.53
500 6.58 7.30 7.08 5.66

Table 8: Average energy consumption for different attack types.

200

NA E(mJ) | E(m)) E (mJ) E (m)])
QL [12] | RL[13] | DL BAC [18] Proposed
25 3.53 3.99 3.89 2.79
50 3.99 4.34 4.20 3.07
75 4.19 458 4.43 3.23
125 4.44 4.85 4.68 3.42
200 4.72 5.13 4.93 3.62
250 4.96 5.36 5.15 3.79
275 5.15 5.57 5.36 3.94
300 5.35 5.78 5.58 4.09
325 5.57 6.07 5.88 428
350 5.87 6.47 6.28 4.54
375 6.33 6.89 6.63 4.85
400 6.68 7.08 6.72 5.01
425 6.68 6.94 6.39 4.89
450 6.42 6.03 5.63 4.42
475 4.97 5.54 5.59 3.93
500 5.11 6.43 6.41 4.39
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Table 9: Average throughput performance for different attack types.

T(kbps) | T(kbps) | L PP | T (kpps)
NA QL [12] | RL[13] DIE]]Z]AC Proposed
25 | 43273 | 46089 | 44022 59944
S0 | 43640 | 46426 | 44346 604.04
75 | 43908 | 46774 | 44697 60840
125 | 44296 | 47198 | 45098 613.85
200 | 44705 | 47614 | 45401 61933
250 | 45082 | 48014 | 45873 62455
275 | 45450 | 48415 | 46254 62975
300 | 45838 | 488.14 | 46636 634.95
325 | 46214 | 49214 | 47017 640.16
350 | 46591 | 49614 | 47398 64537
375 | 46968 | 50014 | 477.79 65057
400 | 47345 | 50415 | 4slel 65578
425 | 47722 | 50815 | 48388 66029
450 | 48099 | 50600 | 44922 64544
475 | 48477 | 50508 | 423.02 634.95
500 | 48558 | 48004 | 41601 65923

Table 10: Average packet delivery ratio performance for different attack types.

NA | PDR (%) | PDR (%) gi%a(/;%c) PDR (%)
QL [12] | RL[13] [18] Proposed
25 | 6209 | 5961 65.43 90.30
50 | 6281 | 60.07 65.92 90.96
75 | 6307 | 6043 6637 91.62
125 | 6358 | 60.98 66.97 92.46
200 | 6421 | 61.54 67.57 93.28
250 | 6475 | 62.06 68.14 94.06
275 | 6530 | 62.58 68.72 94.84
300 | 6585 | 63.10 69.29 95.63
325 | 6639 | 63.62 69.85 94.48
350 | 6693 | 64.14 70.42 95.25
375 | 6747 | 64.66 70.98 96.01
400 | 6802 | 65.18 71.56 96.78
425 | 6857 | 65.70 7213 9755
450 | 6911 | 6622 7270 98.32
475 | 6966 | 66.74 7327 99.10
500 | 7020 | 67.25 73.83 99.85
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