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I
n this paper, we aim at a transdisciplinary approach to atomicity. We especially focus on the mathematical
perspective and we highlight the intimate, usual, defining property of the atom of being, in a sense, the
essential indestructible, indivisible, irreducible, minimal, and self-similar unity. Using notions, concepts

and results, we try to answer the question “What is the atom?” from a mathematical perspective, offering
at the same time a series of possible interpretations and meanings that exceed its strict limits.

Keywords: Atomism; Transdisciplinarity; Atom; Pseudo-atom; Minimal atom; Fractality

In every atom of the realms of the universe
there exist vast oceans of system-worlds.

The Flower Adornment Sutra

(ancient Buddhist writing)

1 Introduction
The idea that matter is made up of discrete units is a very old one, which occurs in many ancient cultures,
such as the Greek and Indian ones.

As a cosmological theory, atomism believes that the universe is composed of atoms that were thought
to be indivisible and can never be transformed. This notion appeared in the years 500 BCE, its followers
being the Greek philosophers Leucippus and Democritus, and the theory was developed later in the fourth
century BCE by Epicurus. The Roman philosopher and poet Titus Lucretius Carus, in his De rerum natura,
uses the synonym relation atomism - epicureanism. A theory from the times of Empedocles and Aristotle
considered matter to be the element of origin of the universe, consisting of the four essential primordial
elements: earth, fire, air and water. These ideas relied on philosophical and theological reasoning, rather
than on concrete evidence and experiments.
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Thus, Empedocles wrote:

The elements predominate, taking turns, throughout a cycle, they disappear by merging with each other or
continue to grow depending on the turn that fate assigns to them. Remaining the same, they circulate through
each other [...]. So, in so far as one is born of the multiple and, conversely, after the decomposition of one, the
multiple is reconstituted, all things appear and do not have a permanent duration. Because this perpetual
change never stops, all things subsist through an unchanged cycle.

2 Axiomatization, Irreducibility and In(non)decomposability in
Mathematics

In the modern understanding, a set of axioms is any collection of formally stated assertions from which
other formally stated assertions follow by the application of certain well-defined rules.

Now, if we take the two sciences dealing with axiom, in logic, it is an indemonstrable first principle,
rule, or maxim, that has found general acceptance or is thought worthy of common acceptance, while
in mathematics, an axiom, postulate or assumption is a statement that is taken to be true, to serve as
a premise or starting point from which other further reasoning, arguments and statements are logically
derived. It is self-evidently true without proof.

Today, we take for granted that logic is the basis of intellectual activity. As a formal discipline, it
started with Aristotle, who intended to catalog things (causes, events, animals, causes, etc.), identifying
valid forms of arguments, and creating symbolic templates for them. This is what we basically considered
as the the main content of logic for more than two thousand years.

But what is the support of logic itself?
If, in symbolic logic, we introduce symbols like p to stand for “proposition”, then we can derive some

basic “laws of thought” which are fundamental axiomatic rules upon which we base our rational discourse.
The main logical rules are:

1. The law of identity: p is p;

2. The law of noncontradiction: p is not non-p;

3. The law of the excluded middle: either p or non-p.

But where do these laws of logic come from? Logic is a formal system. And it can be built on axioms,
like Euclid’s geometry. By the 1400’s, algebra had been invented, and spread all over the world, bringing
along cleaner symbolic representations of things. But it was only in 1847 that George Boole formulated
logic in the same way as algebra, with logical operators like and/or, according to algebra-like rules. Then, in
1910, Whitehead and Russell (Principia Mathematica) generalized the idea that perhaps all of mathematics
could be derived from logic.

Mathematicians have often used the words postulate and axiom as synonyms. Some recommend that
the term axiom be reserved for the axioms of logic and postulate for those assumptions or first principles
beyond the principles of logic by which a particular mathematical discipline is defined.

Mathematicians assume that axioms are true without being able to prove them. If someone starts
with different axioms, then he will get a different kind of mathematics, but the logical arguments will be
the same. Mathematics is not about choosing the right set of axioms, but about developing a framework
from these starting points and every area of mathematics has its own set of basic axioms. In the early
20th century, David Hilbert set up an extensive program to formalize mathematics and to resolve any
inconsistencies in the foundations of mathematics. This included demonstrating all theorems using a set
of simple and universal axioms, proving that this set of axioms is consistent, and proving that this set of
axioms is complete, i.e. that any mathematical statement can be proved or disproved using the axioms.

Unfortunately, these plans were destroyed in 1931 by Kurt Gödel, who showed that in any (sufficiently
complex) mathematical system with a certain set of axioms, one can find some statements which can neither
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be proved nor disproved using those axioms. When first published, Gëdel’s theorems were deeply troubling
to many mathematicians. When setting out to prove an observation, you do not know whether a proof
exists – the result might be true but unprovable. Today we know that incompleteness is a fundamental part
of logic, but also of computer science, which relies on machines performing logical operations. Surprisingly,
it is possible to prove that certain statements are unprovable.

Axioms play a key role not only in mathematics but also in other sciences, notably in theoretical physics.
In particular, the monumental work of Isaac Newton is essentially based on Euclid’s axioms, augmented by
a postulate on the non-relation of space-time and the physics taking place in it at any moment.

In 1905, Newton’s axioms were replaced by those of Albert Einstein’s special relativity, and later on by
those of general relativity. Another paper of Albert Einstein and coworkers (see the Einstein-Podolski-
Rosen paradox), almost immediately contradicted by Niels Bohr, concerned the interpretation of quantum
mechanics. This was in 1935. According to Bohr, this new theory should be probabilistic, whereas according
to Einstein it should be deterministic. The underlying quantum mechanical theory, i.e. the set of “theorems”
derived by it, seemed to be identical. Einstein even assumed that it would be sufficient to add to quantum
mechanics “hidden variables” to enforce determinism. However, thirty years later, in 1964, John Bell found
a theorem, involving complicated optical correlations (see Bell inequalities), which yielded measurably
different results using Einstein’s axioms compared to using Bohr’s axioms. And it took roughly another
twenty years until an experiment of Alain Aspect got results in favor of Bohr’s axioms, not Einstein’s.

The role of axioms in mathematics and in the above-mentioned sciences is different. In mathematics one
neither “proves” nor “disproves” an axiom for a set of theorems; the point is simply that in the conceptual
realm identified by the axioms, the theorems logically follow. In contrast, in physics, a comparison with
experiments always makes sense, since a falsified physical theory needs modification. Irreducibility refers to
something that is incapable of being reduced or of being diminished or simplified further.

In mathematics, the concept of irreducibility is used in several ways. For instance, an irreducible
polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant
polynomials. An irreducible fraction is a fraction in which the numerator and denominator are integers that
have no other common divisors than 1 (and -1, when negative numbers are considered), while a fraction is
reducible if it can be reduced by dividing both the numerator and denominator by a common factor. In
topology, a hyperconnected space or irreducible space (the term irreducible space is preferred in algebraic
geometry) is a topological space that cannot be written as the union of two proper closed sets (whether
disjoint or non-disjoint). And the examples can go on; the essence remains the same. . .

Indecomposability (or, nondecomposability) refers to the incapacity of being partitioned, separated into
components or basic elements. For instance, in abstract algebra, a module is indecomposable if it is non-zero
and cannot be written as a direct sum of two non-zero submodules. In many situations, all modules of
interest are completely decomposable; the indecomposable modules can then be thought of as the “basic
building blocks”, the only objects that need to be studied. In point-set topology, an indecomposable
continuum is a continuum that is indecomposable, i.e. that cannot be expressed as the union of any two of
its proper subcontinua. In probability theory, an indecomposable distribution is a probability distribution
that cannot be represented as the distribution of the sum of two or more non-constant independent random
variables. In chemistry and physics, atomic theory is a scientific theory of the nature of matter, which
states that matter is composed of indivisible units called atoms.

3 Does matter exist?
It is easier to disintegrate an atom than a prejudice.

Albert Einstein

In the twentieth century, the term began to be used more and more by chemists in connection with
the growing number of irreducible chemical elements. In the early twentieth century, through various
experiments with electromagnetism and radioactivity, physicists discovered that the “indivisible” atom was
actually a conglomeration of various subatomic particles (mainly electrons, protons and neutrons), which
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may exist separately; some others, such as Nobel laureate Max Planck, went as far as to state that matter
does not exist. Thus, at the Nobel Prize in Physics in 1918, he said:

As a man who has devoted his whole life to the most clearheaded science, to the study of matter, I can tell you
as a result of my research about the atoms this much: There is no matter as such! All matter originates and
exists only by virtue of a force which brings the particle of an atom to vibration and holds this most minute
solar system of the atom together. We must assume behind this force the existence of a conscious and intelligent
mind. This mind is the matrix of all matter.

Einstein supported this idea, namely that “the atom [is] energy rather than matter” and that “atomic
energy is essentially mind-stuff”.

Since atoms proved to be divisible, physicists later coined the term elementary particles in order to
describe the indivisible, though not indestructible, parts of an atom.

It should be mentioned that the principle of indivisibility and that of irreducibility (indecomposability)
are of overwhelming importance in mathematics. On the one hand, the atom, in the mathematical
sense, does not model the physical atom, but instead preserves and reflects the idea of the atom in its
indecomposable essence. To give just one example, a prime number is a natural number, greater than 1,
which has exactly two divisors: the number 1 and the number itself. These divisors are improper. A prime
number is therefore non-factorable, impossible to split, indivisible. The opposite of the notion of prime
number is that of composite number.

On the other hand, mathematical modelling proves to be not only indispensable, but also in a fertile
relationship of intertextuality with atomic physics. An article published in the journal Notices of the
American Mathematical Society (“Math Unites the Celestial and the Atomic”, Sept. 6, 2005) reports
research that shows a hidden unity between the motion of objects in space and that of the smallest particles.
The mathematics that describes celestial mechanics and that which governs certain aspects of atomic
physics seem to correspond. The relationship between atomic dynamics and celestial dynamics seems to be
underpinned by the same equations that characterize both the motion of bodies in celestial systems and
the energy levels of electrons in simple systems.

Last but not least, in mathematical logic, an atomic formula or an atom designates a formula that does
not contain its own sub-formulas. And this principle, of indivisibility, is also found in philosophy. For
example, Leibniz’s philosophical system is based on the existence of indivisible spiritual elements called
monads. In Greek, monas means “unity”, that which is “one”. Leibniz believed that everything is, from a
metaphysical point of view, reducible to a simple substance. Monads are simple substances that are not
born and do not perish, their autonomy being total. They are indestructible, being a mirror of the entire
universe. Monads hold a high degree of knowledge of the world, or rather a distinct, unique degree, which
is due to the fact that they are eternal, without space, therefore they can be said to be indecomposable.
Since “space is an illusion”, in Leibniz’s view, monads have no spatiality and therefore a distinction must
be made between atoms and monads.

Therefore, according to Mandelbrot’s principle of fractality (self-similarity), we can say that each monad
is in itself a whole world, seen in a certain way. To put it differently, the world is made up of countless
worlds.

4 Atomism and holism
We have seen, in brief, what atomism is. But as everything in this world exists in opposing pairs, the
philosophical concept diametrically opposed to atomism, namely holism, was born. While atomism divides
things in order to know them better, holism looks at things or systems as a whole and argues that in this
manner we can know more about them, and understand better their nature and purpose.

Ian Smuts, who introduced the term holism in his 1926 book, Holism and Evolution, refers to the
dialectic of the part-whole relationship as follows:

In the end it is practically impossible to say where the whole ends and the parts begin, so intimate is their
interaction and so profound their mutual influence. In fact so intense is the union that the differentiation
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into parts and whole becomes in practice impossible, and the whole seems to be in each part, just as the
parts are in the whole (1987/1926: 126).

The explanation is that, unlike atomism, which considers that any whole can be broken down by
analyzing its separate parts and the relationships between them, holism states that the whole takes
precedence and, due to the phenomenon of emergence, it is different and more important than the sum
of its parts, as Nobel laureate Philip Anderson wrote in an article in the journal Science, to which he
gave this very title, “More is different” (Science 04 Aug 1972: Vol. 177, Issue 4047, pp. 393-396, DOI:
10.1126/science.177.4047.393).

In fact one can argue that emergence explains the remarkable simplicity of complexity, and that the
richness of the world around us emerges from the complex behaviour of many interacting components. As
elegantly stated by the German scientist and engineer Jochen Fromm:

� one water molecule is not fluid

� one gold atom is not metallic

� one neuron is not conscious

� one amino acid is not alive.

Emergence therefore represents that property of a complex system, a property that arises from the
collective interaction of its components and that cannot be predicted by analyzing only the structure or
behaviour of a small number of constituents subject to fundamental laws.

When systems become very complex, it is almost impossible to predict their next states. Therefore,
these phenomena require the introduction of new concepts and theories and, as this relates to the way we
get to know the world, it has been called epistemological emergence, being associated in recent years with
the complexity theory and with the nonlinear systems theory. Epistemological emergence does not threaten
atomism at a fundamental level; it does not dispute the fact that the world is made, at ultimate level, of
infinitesimal parts, but simply argues that the way these elements behave is not perfectly predictable.

In a logical approach, by holism we mean that the world functions in such a way that no part can be
known without the whole being known first. Logical atomism is the alternative developed to logical holism,
arguing that the world consists of logical facts (or atoms) that can no longer be broken down, and that
each can be understood independently of other facts and without prior knowledge of the whole. All truths
are thus dependent on a layer of atomic facts, and the world is made up of extremely simple and easy to
understand facts.

The debates about the nature of reality, in which mathematics has always been involved, have brought
it closer to the realm of quantum mechanics, even to that of psychology, where, with particular relevance
and intensity, Nobel Prize-winning physicist Wolfgang Ernst Pauli and psychoanalyst Carl Gustav Jung,
debated, over the course of an intense correspondence and a quarter of a century of friendship, about
reality, the Self, the structure of the psyche, and the phenomena associated with it (e.g., synchronicity),
aspects detailed in the book entitled ”αATOM” (see www.theatlas.org).

The analogies between the structure of the psyche and that of the atom allowed Jung to formulate
his theory of connection, the (inter) dependence of psychic and physical phenomena, thus structuring the
ideas of the Self and the unconscious. While for the atom, the nucleus is the main source of energy, for
the conscious Self the energy comes from the depths of the unconscious. This centre or nucleus represents
for Jung the symbol of the totality of the psyche, which does not coincide with the Ego, but which has
nevertheless always been perceived as external.

In this regard, Pauli admits that the field of physics becomes limited by materialism and considers that,
beyond a certain point, it is about the existence of deeper spiritual layers, which cannot be adequately
defined in conventional space-time terms.

Jung dwelled for a long time on the analogy that Pauli proposes between the atomic nucleus and the
Self, and he wrote in the autumn of 1935:

Generally speaking, the unconscious is thought of as psychic matter in an individual. However, the self-
representation drawn up by the unconscious of its central structure does not accord with this view, for everything
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points to the fact that the central structure of the collective unconscious cannot be fixed locally but is an
ubiquitous existence identical to itself; it must not be seen in spatial terms and consequently, when projected
onto space, is to be found everywhere in that space. I even have the feeling that this peculiarity applies to
time as well as space... A biological analogy would be the functional structure of a termite colony, possessing
only unconscious performing organs, whereas the center, to which all the functions of the parts are related, is
invisible and not empirically demonstrable. The radioactive nucleus is an excellent symbol for the source of
energy of the collective unconscious, the ultimate external stratum of which appears an individual consciousness.
As a symbol, it indicates that consciousness does not grow out of any activity that is inherent to it; rather, it
is constantly being produced by an energy that comes from the depths of the unconscious and has thus been
depicted in the form of rays since time immemorial [...]

The center, or the nucleus, has always been for me a symbol of the totality of the psychic, as the conscious
plus the unconscious, the center of which does not coincide with the ego as the center of consciousness, and
consequently has always been perceived as being external.
(C.G. Jung, The Pauli/Jung Letters, 1932-1958, Edited by C.A. Meier Princeton U. Press, Princeton, N.J.,
2001).

Therefore, both come to the conclusion that living matter has a psychic aspect, and the psyche, a
physical aspect. The quantum domain is the “place” where matter and the mind meet and where the laws
of classical physics lead to nonlocal / acausal phenomena.

This is the realm of field theory, which describes how the single mind, One, links or connects all things
(M.A. Fike, 2014). The suggestive phrase, “Unus mundus”, used by Jung, reflects his beliefs about the
unity of matter, mind, and spirit.

In our reality, we perceive this continuum as divided. The physicist David Bohm explains this in terms
of explicit order or unfolded order (signifying the separation that takes place in the real world), respectively,
implicit order or enfolded order (which describes the profound unit from which the physical world arises).
The difference occurs between what is separate and local (explicit) and what is unified and nonlocal /
acausal (implicit).

Quantum field theory therefore emphasizes the concept of holism, as one cannot consider a part
without referring to its relationship to the whole. This theory reflects the concept of entanglement (a term
introduced by Schrödinger), a phenomenon that explains “spooky action at a distance” (as Albert Einstein
says) or nonlocality / acausality.

The division of reality into parts is the product of a convention, because subatomic particles, like all
elements in the universe, are, in fact, connected to each other. In the general theory of relativity, Einstein
states that space and time are not separate entities, but are instead connected to each other and represent
part of a larger whole, which he called the space-time continuum. Bohm expanded on this idea, stating
that everything in the universe is part of a continuum, and despite the apparent separation of things at the
explicit level, the implicit and the explicit order merge into one another.

In their 1997 book on quantum physics, Marshall and Zohar wrote:

In the quantum universe - and this means the entire universe - each part is “subtly” connected to any of the
others, and the very identity - the being, qualities and characteristics - of constituents depends on the relations
between them.

The meanings of part and whole, of atomism and holism can in fact coexist, depending on perspective.
In his book The Ghost in the Machine (a title inspired by the Cartesian mind-brain dualism), Arthur
Koestler proposed the term holon in order to designate something that is to an equal extent part and
whole.

For instance, referring to life sciences, we can describe an atom as a holon - a whole entity made up
of smaller parts such as protons, neutrons and electrons. The atom itself can be part of a larger holon,
such as a molecule (several atoms chained together to form a new entity). In its turn, the molecule is a
holon that can be part of a cell, or part of an organ, or part of a human being. Thus, holons have a dual
nature: they are equally complete, autonomous entities, but they are also parts of other wholes. From this
perspective, holons exist simultaneously as independent integers in relation to their component parts, but
also as subordinate, dependent parts, subsystems of other holon systems.
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Regarding the relations between part and whole, between One (the principle, the critical substance
underlying the world) and Multiple (the diversity of phenomena), they have been described by mereology,
the branch of logic developed by the Polish logician Stanislaw Lésniewski.

Since the beginnings of philosophy and, more recently, in mereology (Hudson, 2004), profound and
difficult questions have arisen regarding the problem of atomism (mereologically, an atom is an entity that
does not contain its own parts): Are there such entities? And if they exist, is everything entirely made up
of atoms?

The two main options, in the sense that either there are no atoms at all, or that everything is ultimately
made up of atoms, are reflected in two postulates that are mutually incompatible (Varzi, 2007).

Starting from an axiomatization, one might hope that a certain axiomatized mereological theory can
ensure (decide) the existence of an atomic “space” (or domain), that is, it can guarantee that everything in
this domain is composed only of atoms. The results obtained so far at this abstract level of axiomatization
deny the existence of such an atomic domain (Tsai, 2017).

5 The mathematical “atom”
In the following, we shall see that the mathematical perspective preserves the intimate, defining property of
the atom, in its various forms and mathematical meanings of being, in a sense, the essential indestructible,
indivisible, irreducible, minimal and self-similar unity.

Using notions, concepts and results, we shall try to answer the question “What is the atom?” from a
mathematical perspective, offering at the same time a series of possible interpretations and meanings that
exceed its strict limits.

We emphasize that an atom is a mathematical object (an entity) that, in essence, has no other subobjects
(subentities) than the object itself or the null subobject. The idea is also found in computer science, for
example. Thus, in database systems, an atomic transaction is an indivisible and irreducible series of
database operations, so that either all of them occur or nothing happens.

5.1 Elements of set theory
By a set X we mean a collection (an ensemble) of distinct objects (the elements of the set), which is
well-determined and considered as an entity.
∅ denotes the void set (or the empty set), so it does not contain any elements. In the following, we shall

assume that the abstract, arbitrary set X (the space where we operate) is nonvoid, meaning it contains at
least one element.

For instance, N denotes the set of all naturals (0, 1, 2, 3, ...), Z, the set of all integers (...,−3,−2,−1, 0, 1, 2, 3...),
Q, the set of rationals (a rational number is a number that can be expressed as the quotient or fraction
p/q of two integers, a numerator p and a non-zero denominator q), R\Q, the set of all irrationals (which
are not rational numbers, that is, they cannot be expressed as the ratio of two integers:

√
2,
√

3, e, π etc.),
R, the set of all real numbers, that is, rational and irrational numbers.

All these numbers represent features of the surrounding world, they reflect reality, but they are not part
of it.

By R+ we denote the set of all positive real numbers, that is, the subset of those real numbers that are
greater than zero: R+ = {x ∈ R; x ≥ 0}. By x > 0 we mean x ≥ 0 and x 6= 0.

Let A,B be two arbitrary sets from the abstract space X.
We say that the set A is included in the set B and we denote it by A ⊆ B (or B ⊇ A), if any element x

of A (denoted by x ∈ A) also belongs to the set B.
Obviously, if A ⊆ B and B ⊆ A, then A = B.
If an element x does not belong to a set A, then we denote this by x /∈ A.
By A ( B (or B ) A) we mean that A ⊆ B and A 6= B.
The symbol “∀” means “for every”, “∃”, “there exists”, “@, “it does not exist”, “∃!”, “there exists and

it is unique”, and “⇔”, “if and only if”.
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By P(X) we denote the family of all subsets of the set X, and by P0(X), we mean the family of all
nonvoid subsets of X.

For instance, if X = {1, 2, 3}, then

P(X) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

The union of the sets A and B is the set A∪B = {x ∈ X;x ∈ A or x ∈ B}.
The intersection of the sets A and B is the set AnB = {x ∈ X;x ∈ A and x ∈ B}.
We say that two sets A,B are disjoint if A ∩B = ∅.
We say that a family {Ai}i∈{1,2,...,p} of nonvoid sets is a partition of a set A if ∪pi=1Ai = A and the

sets Ai are pairwise disjoint, that is, Ai ∩Aj = ∅, ∀i, j ∈ {1, 2, ..., p}, i 6= j.
The difference of the sets A and B is the set A\B = {x ∈ X;x ∈ A and x /∈ B}.
The symmetric difference of the sets A and B is the set A4B = (A \B) ∪ (B \A).
The complement of the set A is the set cA = {x ∈ X; x /∈ A}.
The Cartesian product of the sets A and B is the set A × B = {(a, b); a ∈ A, b ∈ B}, where (a, b)

signifies the pair of elements a ∈ A and b ∈ B (in this order) (called ordered pair).
If a, b ∈ R, then we introduce the following sets:
(−∞,∞) = R,
the open interval (a, b) = {x ∈ R, a < x < b},
the closed interval [a, b] = {x ∈ R, a ≤ x ≤ b},
the interval open in a and closed in b : (a, b] = {x ∈ R, a < x ≤ b},
the interval closed in a and open in b : [a, b) = {x ∈ R, a ≤ x < b},
the open interval (a,∞) = {x ∈ R, a < x},
the closed interval [a,∞) = {x ∈ R, a ≤ x},
the open interval (−∞, a) = {x ∈ R, x < a},
the closed interval (−∞, a] = {x ∈ R, x ≤ a}.
By the modulus of a real number x, denoted by |x|, we mean

max{x,−x}
(

=

{
x, x ≥ 0
−x, x < 0

)
.

We say that a set A is finite if it contains a finite number of elements. We denote by cardA, the number
of elements which constitute the set.

By a function f :A→ B (defined on A and taking values in B), we mean an application (or, a relation,
a law or a correspondence) so that to any element of A corresponds a unique element of B : ∀x ∈ A,
∃!y = f(x) ∈ B. Sometimes, the function f can be also expressed as x→ f(x).

x is called the argument of the function, A is called the domain of f and B, the codomain of f (the set
of all values of f).

We say that the function f is increasing (decreasing, respectively) if its y-values increase (decrease,
respectively) as the x-value increase: ∀x1, x2 ∈ A, with x1 ≤ x2, then f(x1) ≤ f(x2) (f(x1) ≤ f(x2)),
respectively.

A sequence (xn)n∈N of elements of the space X is a function f : N→ X which associates to any natural
n ∈ N a unique element xn ∈ X, called the general term of the sequence.

If the following condition is satisfied: ∀y ∈ B, ∃!x ∈ A so that y = f(x) (any element of B is the image
of a unique element from A), then the function f is called a bijection (or a biunivocal application).

We say that:
(i) two sets A and B are equipotent if there is a bijection between them;
(ii) a set A is said to be countable if A and the set N of all naturals are equipotent (in other words, the

elements of the set A can be counted, and this process goes on to infinity);
(iii) a set A is said to be at most countable if it is either finite or countable.
We call the cardinal of the set A (denoted by cardA), the class (or the family) of all sets that are

equipotent with a certain given set A. If the set is finite, then its cardinal represent the number of the
elements of the set. If two sets are equipotent, then it is said that they have the same cardinal.
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For instance, the sets N,Z,Q, the set of all even numbers and the set of all odd numbers are countable
sets.

There are also sets that are not at most countable (called uncountable), for instance, R \Q,R etc.
The countable and the uncountable sets are called infinite sets.
Cantor denoted cardN by ℵ0 (alef-zero, alef being the first letter in the Hebrew alphabet).
cardR, the cardinal of all real numbers, is called the continuum and it is denoted by c. Also, R \Q and

any interval of the form [a, b] have the cardinal c.
Returning to operations with sets, we can consider the union (intersection, respectively), of three sets:

A ∪B ∪ C (A ∩B ∩ C, respectively) and then the finite union (intersection, respectively): A0 ∪A1 ∪ ... ∪
An

denoted
= ∪ni=0Ai (A0 ∩A2 ∩ ... ∩An

denoted
= ∩ni=0Ai, respectively).

Recurrently, we can introduce countable unions (intersections, respectively) of sets: A0 ∪A2 ∪ ...∪An ∪
...

denoted
= ∪∞n=0An (A0 ∩A2 ∩ ... ∩An ∩ ...

denoted
= ∩∞n=0An, respectively).

(An)n∈N denotes the corresponding sequence of sets (Precupanu, 1998).

5.2 Order relations

Let X and Y be two arbitrary, nonvoid sets. A subset R of the Cartesian product X×Y is called a relation
from X to Y . If, particularly, X = Y , we say that R is a relation on X.

If X is a nonvoid, abstract set, then a relation on X, denoted by “≤” is called a partial order relation if
the following axioms are fulfilled:

(i) reflexivity : ∀x ∈ X, x ≤ x (in other words, any element is in relation with itself or, each element is
comparable with itself);

(ii) antisymmetry : ∀x, y ∈ X, from x ≤ y and y ≤ x it results x = y (or, no two different elements
precede each other);

(iii) transitivity : ∀x, y, z ∈ X, if x ≤ y and y ≤ z, then x ≤ z (or, the start of a chain of precedence
relations must precede the end of the chain).

In this case, the set X endowed with the partial order relation R (denoted by (X,R)) is called a
(partially) ordered set.

For instance, the relation “≤” on R is an order relation. Also, the relation of inclusion of sets is a
(partial) order relation.

A partially ordered set A is said to be totally ordered if ∀x, y ∈ X, it holds either x = y or y = x (in
other words, any two of its elements are comparable).

Let (X,≤) be an arbitrary partially ordered set and A a nonvoid subset of X.
(i) An element α ∈ A is called the greatest element of A if x = α, ∀x ∈ A (an element of A that is

greater than every other element of A);
(ii) An element β ∈ X is called the least element of A if β ≤ x, ∀x ∈ A (an element of S that is smaller

than every other element of S);
The greatest element of a partially ordered subset must not be confused with the maximal elements of

the set. A set can have several maximal elements without having a greatest element.
(iii) An element a ∈ A is called a maximal element of the set A if from the conditions x ∈ A and a = x

it follows x = a (it is an element of A that is not smaller than any other element in A);
(iv) An element b ∈ A is called a minimal element of the set A if from the conditions x ∈ A and x ≤ b

it folllows that x = b (it is an element of A that is not greater than any other element in A);
(v) An upper bound (or majorant) of A is an element β ∈ X so that a ≤ β, ∀a ∈ A (is greater than or

equal to every element of A).
(Dually, a lower bound or minorant of A is defined to be an element of X which is less than or equal to

every element of A.)
Zorn’s lemma. Every partially ordered set (A,≤) for which every totally ordered subset has an upper

bound contains at least one maximal element.
The notion of an atom is found in algebra in the following sense:
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An element a of a partially ordered set A possessing the property that there exists 0 ∈ A so that 0 = x
for every x ∈ A is called an atom if 0 < a and it does not exist x ∈ A so that 0 < x < a.

In fact, in partially ordered sets, atoms are generalizations of the singletons (that is, sets containing
only one element) of the sets theory. Moreover, in this sense, atomicity (the property of a mathematical
object of being atomic), provides a generalization in an algebraic context of the possibility of selecting an
element from a nonempty set (Davey and Priestley, 2002).

In fact, in mathematical logic, an atomic formula is a formula without a deep propositional structure,
that is, a formula that does not contain logical connections, or, equivalently, a formula that does not have
strict subformulas.

Atoms are thus the simplest well-formed formulas of logic, the compound formulas being formed by
combining atomic formulas using logical connections. Also, also in logic, an atomic sentence is a type
of declarative sentence that is either true or false and that cannot be broken down into other simpler
sentences.

In some models of set theory, an atom is an entity (a mathematical object) that can be an element of a
set but does not itself contain elements with similar properties (hence the “ultimate” character of an atom).

As we shall see in the following, in mathematical analysis, a set’s property of being an atom is defined
in relation to another mathematical object, namely, with respect to a set (multi)function.

5.3 Elements of measure theory

Classes of sets
Let us consider an abstract, nonvoid set T and let be the family P(T ) of all parts (subsets) of T .
O nonvoid subfamily C ⊂ P(T ) of subsets of T is called a ring if the following conditions (axioms) are

fulfilled:
(i) ∀A,B ∈ C it follows that A \B ∈ C;
(ii) ∀A,B ∈ C it follows that A ∪B ∈ C.
For instance, P(T ) is obviously a ring of sets (the largest one in the sense of inclusion) of T .
If, additionally to the axioms (i) şi (ii), the following condition is fulfilled:
(iii) T ∈ C,

then C is called an algebra of subsets of T .
For instance, P(T ) is an algebra of sets (the largest in the sense of inclusion) of T .
A class A of subsets of T is said to form a σ−algebra if A is an algebra which satisfies, additionally,

the property:
(iv) ∀(An)n∈N ⊆ A (for every sequence of sets of A) it holds that ∪∞n=0An ∈ A (Precupanu, 2006).

Set functions
Let C be a ring of subsets of a non-empty abstract set T and m : C → R+ be a set function which satisfies
the condition m(∅) = 0.

The following notions generalize the notion of a measure in its classic sense (as a foundation of the field
of mathematics, known as “measure” theory, a subdomain of mathematical analysis).

In mathematical analysis, a measure (in classic sense) is a function which “measures”, assigning to
certain sets of a class (family) of sets, a positive real number or +∞. In this sense, a measure is a
generalization of the concepts of length, area or volume.

One particularly important example is the Lebesgue measure on a Euclidean space, which assigns the
conventional length, area and volume of Euclidean geometry to appropriate subsets of the Euclidean space
Rn. For instance, the Lebesgue measure of the interval [0, 1] is its length in the ordinary sense of the word,
namely, 1 (Precupanu, 2006; Royden, 1988; Fremlin, 2000).

A measure must be additive, which means that the measure of a set representing the union of a finite
(or countable) number of smaller sets that are pairwise disjoint is equal to the sum of the measures of these
smaller subsets.

ISSN: 1949-0569 online Vol. 13, pp. 77-99, 2022



Transdisciplinary Journal of Engineering & Science 87

The notions that we shall introduce next have contributed (among many others) to the development in
recent years of the theory of non-additive measures, sometimes known as the fuzzy measures theory (Pap,
1995). These notions prove their utility due to the necessity to model phenomena from the real world, in
circumstances in which the condition of additivity (either finite or countable), as an immediate property of
a measure, is much too restrictive.

The set function m is called:
(i) null-additive if m (A ∪B) = m (A), for every sets A,B ∈ C, satisfying the condition m(B) = 0;
(ii) null-null-additive if m(A∪B) = 0, for every sets A,B ∈ C, satisfying the condition m(A) = m(B) = 0;
(iii) diffused if m({t}) = 0, whenever {t} ∈ C;
(iv) monotone if m(A) = m(B), for every sets A,B ∈ C, so that A ⊆ B;
(v) null-monotone if for every two sets A,B ∈ C, having the property that A ⊆ B, if m (B) = 0 holds,

then one necessarily has also m(A) = 0;
(vi) finitely additive if m(A ∪B) = m(A) + ν(B), for every disjoint sets A,B ∈ C;
(vii) subbaditive if m(A ∪B) = m(A) + ν(B), for every (disjoint or not) A,B ∈ C.

Example. (i) Let us suppose that T = {t1, t2, ..., tn}, where for every i ∈ {1, 2, ..., n}, ti represents a
particle, and m : P (T )→ R+ is a set function representing the mass of the particle.

In the macrosopic world, m is a finitely additive set function. At quantum scale, however, this
statement no longer remains valid due to the phenomena of annihilation. For instance, if t1 and t2
represents an electron and a positron, respectively, then m({t1}) = m({t2}) = 9, 11 × 10−31kg, but
m({t1, t2}) = m({t1} ∪ {t2}) = 0;

(ii) Entropy in Shannon’s sense is a subadditive set function, taking real values (Gavriluţ and Agop,
2016; Gavriluţ, 2019).

sectionTypes of atoms

All things are made up of atoms

Richard Feynman

In the following, we shall present several types of atoms in their mathematical meaning, we shall establish
some relationships among these types of atoms and we shall also highlight several possible interpretations.

Unless stated otherwise, C will represent a ring of subsets of an arbitrary nonvoid set T and m : C → R+,
an arbitrary set function satisfying the condition m(∅) = 0. As we have already seen, this abstract
set function represents the generalization of the classic notion of a measure used in the domain of
mathematics called “measure theory” and it is the mathematical object through which the process of
so-called “measurement” is performed.

5.4 Atoms and pseudo-atoms
These are the main types of atoms from a mathematical perspective:

I. A set A ∈ C is called an atom of m if m (A) > 0 and for every B ∈ C, with B ⊆ A, it holds either
m(B) = 0 or m(A \B) = 0.

We observe that, in a certain sense, an atom is a special set, of strictly positive “measure”, having
additionally the property that any of its subsets either has zero “measure”, or the difference set between the
initial set and its subset we refer to has zero “measure”.

An atom can be interpreted, from a physics viewpoint, as the correspondent of a black hole.
II. The set function m is said to be non-atomic if it has no atoms, that is, for every set A ∈ C with

m(A) > 0, there exists a subset B ∈ C (B ⊆ A) so that m(B) > 0 and m(A \B) > 0.
III. A set A ∈ C is called a pseudo-atom of m if m (A) > 0 and for every subset B ∈ C (B ⊆ A) one

has either m(B) = 0 or m(B) = m(A).
In other words, a pseudo-atom is a special set, of strictly positive “measure”, for which any of its

subsets either has null “measure”, or has the same “measure” as the set itself. Thus, it can be stated
that a pseudo-atom possesses the property that any of its subsets either has null “measure” (that is, it is
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negligible during the “measurement” process), or it entirely “covers” the set (during the same “measurement”
process).

In other words, assuming that the set function m is monotone, then a pseudo-atom is a set of strictly
positive “measure” and which does not contain any proper subset of strictly smaller and strictly positive

“measure”.
IV. The set function m is said to be non-pseudo-atomic if it does not have pseudo-atoms, that is, for

any set A ∈ C with m(A) > 0, there exists a subset B ∈ C (B ⊆ A) so that m(B) > 0 and m(B) 6= m(A).
For instance, the Lebesgue measure on the real line is a measure (in the classic sense) which is

non-pseudo-atomic (Royden, 1988), and therefore it does not have any pseudo-atom.
The non-pseudo-atomic measures satisfy the following remarkable property, which we owe to Sierpinski,

a property which states that if m is a non-pseudo-atomic measure (in classic sense), defined on a σ-algebra
A (of subsets of an abstract space T ), and A ∈ A is an arbitrary set so that m(A) > 0, then for every
element b ∈ [0,m(A)], there exists a set B ∈ A, so that B ⊆ A and m(B) = b (in other words, the set
function m takes a continuum of values, and thus it does not omit any intermediate value).

V. A set function m is called purely-atomic if the space T can be represented as a finite or countable
union of atoms of m.

Examples. (i) Let be the set T = {1, 2, ..., 9}. We define the set function m : P(T ) → R+ as follows:
∀A ⊆ T,m(A) = cardA. Then ∀i ∈ {1, 2, ..., 9}, the singleton {i} is an atom of m. Indeed, ∀i ∈ {1, 2, ..., 9},
m({i}) = 1 > 0 and ∀B ⊆ {i}, we have either B = ∅, in which case m(B) = 0, or B = {i} in which case
m({i} \B) = m(∅) = 0.

Consequently, in this case, any singleton is an atom.
(ii) Generally, there is no relationship between the notion of an atom and that of a pseudo-atom:
Let us consider an abstract set T = {t1, t2} constituted of two distinct arbitrary elements and let also

be the set function m : P(T )→ R+ defined for every A ⊂ T by m(A) =

 2, if A = T
1, if A = {t1}
0, if A = {t2} or A = ∅.

Then T is an atom and it is not a pseudo-atom for m.
Indeed, m(T ) = 2 > 0. Let be an arbitrary subset B of T .
If B = ∅, then m(B) = 0;
If B = {t1}, then, by the definition, m(T \B) = m({t2}) = 0;
If B = {t2}, then, by the definition, m(B) = 0;
If B = {t1, t2}(= T ), then m(T \B) = m(∅) = 0.
Therefore, T is indeed an atom of m.
On the other hand, let us note that there exists the singleton {t1} for which m({t1}) = 1 6= 0 and

m({t1}) = 1 6= 2 = m(T ). Consequently, T is not a pseudo-atom of m.
However, we note that, if the set function m is null-addtive, then any atom of m is a pseudo-atom (*).
Indeed, let us assume that m : C → R+ is a null-additive set function, and that the set A ∈ C is an

atom of m. We shall prove that A is also a pseudo-atom of m.
Obviously, since A este atom, then m(A) > 0. Then, if we consider an arbitrary set B∈C, with B ⊆ A,

from the fact that A is an atom it follows that either m(B) = 0 or m(A\B) = 0. In the latter case, because
m is null-additive, it follows that m(A) = m((A \B)∪B) = m(B). Consequently, A is a pseudo-atom of m.

Conversely, if the set function m : C → R+ is, moreover, finitely additive, then any pseudo-atom A ∈ C
of m is an atom, too, and this immediately yields based on the equality m(A) = m((A \ B) ∪ B) =
m(A \B) +m(B) = m(B), which implies m(A \B) = 0.

That is why, in the framework of the classic measure theory (a measure always possesses the null-additive
property), the notions of an atom and that of a pseudo-atom coincide.

The converse of the above statement (*) does not generally hold since there exist pseudo-atoms which
are not atoms, as the following example will show:

(ii) Let T = {t1, t2} be an abstract set, containing two arbitrary elements, and let us consider the set

function m : P (T )→ R+, defined for every set A ⊆ T , by m(A) =

{
1, if A 6= ∅
0, if A = ∅.
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Then m is null-additive and T = {t1, t2} is a pseudo-atom of m, but it is not an atom of m.

Let A,B ⊆ T be so that m(B) = 0. By the definition of m we note that we must necessarily have
B = ∅, whence m(A ∪B) = m(A), and this proves that the set function m is null-additive.

We prove now that T = {t1, t2} is a pseudo-atom of m. Indeed, we have m(T ) = 1 > 0 and let B ⊆ T
an arbitrary subset.

If B = ∅, then m(B) = 0.

If B 6= ∅, then the set B either is a singleton, or is the set T, itself consisting of two elements. In both
situations, one has m(T ) = 1 = m(B), which proves that T = {t1, t2} is a pseudo-atom of m.

Let us prove now that T = {t1, t2} is not an atom of m. Indeed, m(T ) = 1 > 0 and there exists
the singleton {t1} for which we have m({t1}) = 1 6= 0 and m(T \ {t1}) = m({t2}) = 1 6= 0. Therefore,
T = {t1, t2} is not an atom of m.

(iii) The Dirac measure (or, the unit mass measure) (or, the δ-measure) δt concentrated in an arbitrary
fixed point t of an abstract set T , is an example of a measure (in the classical sense) which is purely-atomic
(Kadets, 2018).

The Dirac measure is defined as follows:

If A is a σ-algebra of subsets of T , then δt(A) =

{
1, t ∈ A
0, t /∈ A ,∀A ∈ A.

Obviously, T is an atom of δt (because δt(T ) = 1 > 0 and ∀A ∈ A, it holds either δt(A) = 0 or
δt(cA) = 0, as t /∈ A or t ∈ A, that is, t /∈ cA).

Let us recall now the following:

If C is a ring of subsets of an abstract space T and if m : C → R+ is a set function satisfying the
condition m(∅) = 0, two sets A1, A2 are said to be equivalent if m(A14A2) = 0.

We note that if the set function m is additionally null-monotone and null-additive, then m(A1) = m(A2)
(which justifies the terminology, since the equivalence of the sets takes place in the sense of the “measurement”
process).

Indeed, since m(A14A2) = m((A1 \ A2) ∪ (A2 \ A1)) = 0 and m is null-monotone, it follows that
m(A1 \A2) = 0 and m(A2 \A1) = 0, whence, because m is null-additive and m(A1) = m((A1 \A2)∪ (A1 ∩
A2)) = m(A1 ∩A2), m(A2) = m((A2 \A1) ∪ (A1 ∩A2)) = m(A1 ∩A2), it follows that m(A1) = m(A2).

We note that, with respect to the Dirac measure δt, the atom T (the space itself, unreduced to a single
point) is equivalent to the singleton {t}, t ∈ T (Kadets, 2018). Indeed, we have m(T4{t}) = 0 (so, with
respect to the Dirac measure, the space “collapses” into a single point).

We shall prove in the following that, with respect to a monotone and null-additive set function, any set
which is equivalent to an atom is itself an atom:

Let us assume that the set A1 is an atom and we prove that the set A2, which is equivalent to the set
A1, possesses the same property. Indeed, according to the above statements, we have m(A2) = m(A1) > 0
and let B ∈ C, B ⊆ A, be arbitrary.

If m(B) = 0, then the proof ends.

If m(A1 \B) = 0, then, since m is monotone and m(A14A2) = 0, it follows that m(A2 \A1) = 0.

On the other hand, again from the monotonicity of m we have m(A2 \B) = m((A2 \A1) ∪ (A1 \B)) =
m(A1 \ B) = 0, based also on the fact that m is null-additive and m(A2 \ A1) = 0. Consequently,
m(A2 \B) = 0, and this finally proves that A2 is an atom of m, too.

Let us also note that, with respect to a monotone and null-additive set function, any set which is
equivalent to a pseudo-atom is, itself, a pseudo-atom:

Let us assume that the set A1 is a pseudo-atom and we prove that the set A2, which is equivalent to
the set A1, possesses the same property. Indeed, from the above statements, we have m(A2) = m(A1) > 0
and let B ∈ C, B ⊆ A, be arbitrary.

If m(B) = 0, then the proof ends.

If m(A1) = m(B), then, since m(A2) = m(A1) = m(B), it follows that A2 is also a pseudo-atom of m.
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5.5 Atoms and fractality
Next, we shall underline the fact that both the notion of atom and that of pseudo-atom (in the mathematical
sense) possess a remarkable property, namely that of self-similarity (every part reflects the whole), a property
which is a characteristic to fractals, both from a mathematical point of view and from the perspective of
modern physics. This finding, among others, justifies the extension we illustrate in the last section, in
which we address the necessity to introduce the notion of a fractal atom (Gavriluţ et al., 2019).

The self-similarity property of the atoms (pseudo-atoms, respectively)

(i) If m : C → R+ is a null-monotone set function, with m(∅) = 0, A ∈ C is an atom of m and B ∈ C is
a subset of A having the property m(B) > 0, then B is also an atom of m and, moreover, m(A \B) = 0
(which means that the “measure” of what remains when the set B is removed from the set A is null).

Indeed, one has m(B) > 0 and if we consider an arbitrary set C ∈ C, with C ⊆ B, then, since B ⊆ A,
it follows that C ⊆ A.

If m(C) = 0, the proof ends.
Let us assume now that m(C) 6= 0. Because A ∈ C is an atom of m, it follows that m(A \ C) = 0.
Since B \C ⊆ A \C and m is null-monotone it gets that m (B \ C) = 0 and, therefore, B is an atom of

m.
Moreover, since A ∈ C is an atom of m and B ∈ C is a subset satisfying the property m(B) > 0, then

we must necessarily have m(A \B) = 0.
(ii) If A ∈ C is a pseudo-atom of m and the set B ∈ C satisfies B ⊆ A and m(B) > 0, then B is also a

pseudo-atom of m and, moreover, m(B) = m(A) (which means that the sets A are B are “identical” with
respect to the “measure” m).

Indeed, we have m(B) > 0 and, if we consider an arbitrary set C ∈ C, with C ⊆ B, then, since B ⊆ A,
it follows that C ⊆ A.

If m(C) = 0, the proof ends.
Let us assume now that m(C) 6= 0. Since A ∈ C is a pseudo-atom of m, it follows that m(A) = m(C).
On the other hand, since A ∈ C is a pseudo-atom of m, the set B ∈ C satisfies B ⊆ A and m(B) > 0,

then m(B) = m(A).
In consequence, m (B) = m(C), and this finally proves that B is also a pseudo-atom of m.

Let us make, at the end of this section, the following observation:
Assuming that a set function m : C → R+ is monotone, null-additive and regular (meaning that, roughly

speaking, we can, through it, approximate sets about which we have little information, with sets about
which we have more information), one can prove that for each atom A of m (if it exists), there exists a
unique element a ∈ A so that m(A) = m({a}) (Pap, 1995) (this means that the “measure” of the atom is
equal to the measure of each “point” it contains, and this reflects the holographic perspective, according to
which the information is concentrated in a single point.

Indeed, any part of a fractal reflects the whole, as a pattern:
To see a World in a Grain of Sand
And a Heaven in a Wild Flower,
Hold Infinity in the palm of your hand
And Eternity in an hour.

(William Blake, Auguries of Innocence)

5.6 Minimal atoms
We shall now introduce a very special category of atoms, which we show to reflect the property of
indivisibility (non-decomposability).

Let C be an arbitrary ring of subsets of an abstract space T and let m : C → R+ be a set function so
that m(∅) = 0.

A set A ∈ C is called a minimal atom of m if m(A) > 0 and for every subset B ∈ C (B ⊆ A) it holds
either m(B) = 0, or B = A (Ouyang et al., 2015).
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In other words, a minimal atom is a special set, of stricly positive “measure”, so that any of its subsets
has either zero “measure”, or identifies with the set itself. Thus, a minimal atom has the property that
any of its subsets has either zero “measure” (that is, it is negligible during the “measurement” process), or
identifies with the initial set (without the need of a “measurement” process).

Let us note that the terminology is justified. Indeed, if A ∈ C is a minimal atom of m, then for m there
cannot exist other minimal atom A1 ∈ C, which is different from A and satisfies A1 ⊂ A.

Indeed, if we assume, on the contrary, that there exists another minimal atom A1 ∈ C which is different
from A and satisfies A1 ⊂ A, then, since A1 is a minimal atom, we get that m(A1) > 0. Because A1 ( A,
then A1 = A, and this is false due to the assumption we made.

Example. Let T = {a, b, c, d} be an abstract set, constituted of four distinct elements and let also be

the set function m : P (T )→ R+, defined for every A ⊆ T by m (A) =

 5, if A = T
2, if A 6= T
0, if A = ∅.

We note that any singleton (i.e., a set containing only one element) is a minimal atom of m. Indeed,
the “measure” m of any singleton is, according to the definition, 2, so it is strictly positive and any subset
is either void and hence has zero measure, or is the set itself.

We note that, in general, any minimal atom is, particularly, an atom and also a pseudo-atom.
Indeed, if A ∈ C is a minimal atom of m, then m (A) > 0 and for any of its subset B ∈ C (B ⊆ A) it

holds either m(B) = 0, or B = A. The latter posibility yields m(A \B) = 0 and m(B) = m(A), so A is
both an atom and a pseudo-atom of m.

The following examples highlight the fact that there exists generally no relationship between the notions
of atom/pseudo-atom and that of minimal atom:

Examples. (i) Let T = {a, b} be an abstract set constituted of two distinct elements and let also be the
set function m : P(T )→ R+ defined as follows:

∀A ⊆ T,m(A) =

{
1, if A = {a} or A = T
0, otherwise.

Then T is an atom of m:
Obviously, m(T ) = 1 > 0. Let B ⊆ T be an arbitrary set.
If B = ∅, then m(B) = 0.
If B = {a}, then m(T \B) = m({b}) = 0.
If B = {b}, then m(B) = 0.
If B = T = {a, b}, then m(T \B) = m(∅) = 0.
But T is not a minimal atom of m:
Obviously, one has m(T ) = 1 > 0 and let B ⊆ T be an arbitrary set. We observe that there exists the

set B = {a} 6= T for which m(B) = 1 6= 0.
We also note that the set {a} is an atom (we have m({a}) = 1 > 0 and any subset B ⊆ {a} either is

void, so m(B) = 0, or is the set {a} itself, so m({a} \ {a}) = 0). The set {a} is also a minimal atom of m
since m({a}) = 1 > 0 and any subset B ⊆ {a} either is void, so m(B) = 0, or is {a} itself.

(ii) Let T = {a, b, c, d} be an abstract set constituted of four distinct elements and let also be the set
function m : P (T )→ R+, defined as follows: ∀A ⊆ T ,

m(A) =


5, if A = T
3, if A = {a, b, c} or A = {a, b, d} or A = {a, c, d}
2, if A = {a, b} or A = {a, c}
0, otherwise.

Then {a, b} and {a, c} are minimal atoms of m. We shall prove the statement, for instance, for the
{a, b}:

Indeed, we have m({a, b}) = 2 > 0 and let B be an arbitrary subset.
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If B = {a, b}, the statement is verified.
If B = {a} or B = {b}, then, according to the definition, we have m({a}) = m({b}) = 0, so the

statement is again verified.
If B = ∅, then m(B) = 0.

In the following, let us note that if m : C → R+ is a null-null-additive set function and A,B ∈ C are
two different minimal atoms of m, then they must be necessarily disjoint, that is, AnB = ∅.

Indeed, let us assume that, on the contrary, A ∩B 6= ∅. Since A,B ∈ C are two minimal atoms of m,
A \ (A ∩B) = A \B ⊆ A and A ∩B ⊆ B, it follows that [m(A \B) = 0 or A \B = A] and [m(A ∩B) = 0
or A ∩B = B].

(i) If A \B = A, then A ∩B = ∅, which is false since, according to our assumption, we have A ∩B 6= ∅.
(ii) If m(A \ B) = 0 and m(A ∩ B) = 0, then, since m is null-null-additive, one gets that m(A) =

m((A \B) ∪ (A ∩B)) = 0, which is false, since m(A) > 0, the set A being a minimal atom of m.
(iii) If m(A \B) = 0 and A ∩B = B, then B ⊆ A, so, since A is a minimal atom of m, one gets from

the above observation that B = A, which is false.
Consequently, A ∩B = ∅.

The property we shall demonstrate next reflects the non-decomposability (non-partitionability) of the
minimal atoms:

A minimal atom A ∈ C of a null-null-additive set function m cannot be partitioned in sets that are
elements of C. Indeed, if we suppose, on the contrary, that there exists a partition of a lui A, this means
that there exists a family {Ai}i∈{1,2,...,p} of nonvoid sets of C so that ∪pi=1Ai = A and the sets Ai are
pairwise disjoint.

Referring to the first set A1, since A ∈ C is a minimal atom, it follows that we cannot have the situation
A1 = A. Therefore, m(A1) = 0. Analogously, for the second set, A2, we get that m(A2) = 0. Recurrently,
it gets that m(A3) = ... = m(Ap) = 0. Since m is null-null-additive, it follows that m(A) = m(∪pi=1Ai) = 0,
which is obviously false.

Consequently, any minimal atom is non-decomposable.

In the following, we shall prove that the converse of this statement also holds, namely, we shall
demonstrate that any non-decomposable atom A ∈ C is necessarily a minimal atom. Indeed, since the set
A is an atom, then m(A) > 0.

Since the set A is not partitionable, there cannot exist two nonvoid disjoint subsets A1, A2 ∈ C of A so
that A = A1 ∪A2.

Let be an arbitrary set B ∈ C, with B ⊆ A.
If m(B) = 0, then the proof ends.
If m(B) > 0, since B ⊆ A, one gets that B = A (otherwise, the family {A \B,B} is a partition of A:

A \B,B ∈ C, (A \B) ∩B = ∅, (A \B) ∪B = A, which is false).
Consequently, A is a minimal atom.

From the two statements above, one arrives at the following conclusion: an atom is minimal if and only
if it is not partitionable (it is non-decomposable).

In the following, we shall highlight the fact that, in the case when the abstract set T is finite, then any
set A ∈ C, satisfying the condition m(A) > 0 possesses at least one set B ∈ C, B ⊆ A, which is a minimal
atom minimal of m.

Moreover, in the particular case when A is an atom of m and the set function m is null-additive, one
gets that m(A) = m(B) and the set B is unique.

Indeed, let us consider the family of sets M = {M ∈ C, M ⊆ A,m(M) > 0}. Obviously, since A ∈ C,
then M 6= ∅.

We note that any minimal element M ∈M ofM is a minimal atom of m. Indeed, since M is a minimal
element, there cannot exist another set D ∈M so that D (M (**).

Since M ∈M, this means that M ∈ C, M ⊆ A and m(M) > 0.
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We shall prove that M is a minimal atom of m. Indeed, for any set S ⊆ M,S ∈ C, we have either
m(S) = 0 or m(S) > 0. In the latter case, we have either S = M (which is suitable) or S 6= M , which
contradicts the statement (∗∗).

Let us assume, moreover, that the set A is an atom of m and m is null-additive. According to the
considerations proved above, there exists at least one set B ∈ C, B ⊆ A, which is a minimal atom of m.
This means that m(B) > 0 and, because A is an atom, we must necessarily have m(A \B) = 0. Since m is
null-additive, this yields m(A) = m((A \B) ∪B) = m(B).

It only remains to prove that the set B is unique. Indeed, if we suppose, on the contrary, that there exist
two different minimal atoms B1 and B2 of m, this would imply, as before, that m(A \B1) = m(A \B2) = 0.

If m(B1∩B2) = 0, then m(A) = m(A\(B1∩B2)∪(B1∩B2)) = m(A\(B1∩B2)) = m((A\B1)∪(A\B2)),
which is false.

If m(B1 ∩B2) > 0, since B1 and B2 are minimal atoms of m, it results that B1 = B1 ∩B2 = B2, which
is again false.

Finally, we shall prove that, if the set T is finite, the set function m is null-additive, and {Ai}i∈{1,2,...,p}
is the family of all different minimal atoms which are contained in a set A ∈ C, satisfying m(A) > 0 (we
proved in the above considerations that such atoms exist), then m(A) = m (∪pi=1Ai).

(This means that the set A identifies itself, from the “measure” m viewpoint, with the union of all
different minimal atoms which it contains, therefore the minimal atoms are the only ones that matter from
the “measurement” point of view).

Let us note that m(A\∪pi=1Ai) = 0 (if, on the contrary, one has m(A\∪pi=1Ai) > 0, from the statement
proved above it would follow that there exists at least one set B ∈ C, B ⊆ A \ ∪pi=1Ai ⊆ A, which is a
minimal atom of m, and this is false since A1, ..., Ap are the only different minimal atoms contained in A).

Since m(A \ ∪pi=1Ai) = 0 and m is null-additive, it follows that m(A) = m((A \ ∪pi=1Ai) ∪ (∪pi=1Ai)) =
m(∪pi=1Ai).

Let us finally note the following:

1. Any minimal atom is also an atom and a pseudo-atom (which justifies the terminology);

2. If the set function is null-additive, then any of its atoms is a pseudo-atom, too;

3. If, moreover, the set function is finitely additive, then the converse of the above statement is also
valid, therefore any pseudo-atom is particularly an atom.

Consequently, for a finitely additive set function (which automatically possesses the null-additivity
property), the notion of atom and that of pseudo-atom coincide. We summarize all these observations in
the following schematic:
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6 Extensions of the notions of atom
Generalizations of the mathematical notion of an atom have been made, so far, in two major directions. A
first direction is given by the fact that, instead of set functions, which are indispensable to the process
of the so-called “measurement”, one could generally operate with set multifunctions (that is, functions
that associate a set to another set). Thus, results with a higher degree of generalization and abstraction
can be obtained. The second direction is given by the correlation that can be made by placing the notion
of (minimal) atom within the fractal sets theory, thus resulting in the notion of fractal (minimal) atom
(Gavrilut et al., 2019; Gavriluţ and Agop, 2016).

It is no coincidence that in literature, Eminescu’s manuscript notebooks contain observations on the
holographic principle, which constitutes the essence of interrelation, of interconnection: “In the ether, each
atom is an individual which is connected with everything”.

In his Memoirs, Werner Heisenberg recounts that in the summer of 1920, Niels Bohr, one of the fathers
of quantum theory, told him that: “When we talk about atoms, language can be used just as in poetry.
The poet is not so much concerned with the description of facts, as with the creation of images and the
establishment of mental connections”. A language problem that Bruce Rosenblum and Fred Kuttner
reprised under another guise in their book, The quantum enigma: “In quantum theory there is no atom in
addition to the wave function of the atom. This is so crucial that we say it again in other words. The
atom’s wave-functions and the atom are the same thing; the wave function of the atom is a synonym for
the atom.” (2011).

6.1 Set multifunctions
A triplet (X,+, ·) constituted of an abstract, nonvoid set X, an operation “+” of addition on X and an
operation “·” of multiplication with real scalars is called a real linear space on R if the following axioms
are fulfilled:

1) associativity: x+ (y + z) = (x+ y) + z, ∀x, y, z ∈ X;
2) the existence of the identity element of addition θ (called the origin of the space X): ∃θ ∈ X so that

∀x ∈ X, x+ θ = θ + x = x;
3) ∀x ∈ X, ∃ − x ∈ X (called the additive inverse of x) so that x+ (−x) = (−x) + x = θ;
4) commutativity: x+ y = y + x, ∀x, y ∈ X;
5) λ(x+ y) = λx+ λy, ∀x, y ∈ X, ∀λ ∈ R;
6) (λ+ µ)x = λx+ µx, ∀x ∈ X, ∀λ, µ ∈ R;
7) λ(µx) = (λµ)x, ∀x ∈ X, ∀λ, µ ∈ R;
8) 1 · x = x, ∀x ∈ X.

For instance, the set R of real numbers, endowed with the operation “+” of addition of two real numbers
and also with the operation “·” of multiplication of a real number with a real scalar, that is, the triplet
(R,+, ·), constitutes a real linear space.

If (X,+, ·) is a real linear space, then a function ‖ · ‖ : X → R+ is called a norm on the space X if the
following axioms are fulfilled:

N1 ‖x‖ ≥ 0, ∀x ∈ X; ‖x‖ = 0⇔ x = θ (the positivity of the norm);

N2 ‖λx‖ = |λ| · ‖x‖ , ∀x ∈ X,∀λ ∈ R (the homogeneity of the norm);

N3‖x+y‖ = ‖x‖+‖y‖, ∀x, y ∈ X (the triangular inequality).

The pair (X, ‖ · ‖) is called a normed space.

For instance, (R,+, ·) endowed with the norm defined by ‖x‖ = |x|, ∀x ∈ R, is a real normed space.

In what follows, let be an abstract nonvoid set T , C a ring of subsets of T , X a real linear normed space
with the origin θ and P0(X), the family of all nonvoid subsets of X.
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By a set multifunction we mean a function (or, application) which associates a set to another set, in
contrast with the notion of a function, which associates a point to another point.

So, in what follows, let µ : C → P0(X) be an arbitrary set multifunction satisfying the condition
µ(∅) = θ.

The notions of atom, pseudo-atom, minimal atom introduced with respect to a set function m can be
generalized in this context, with respect to the set multifunction µ, as follows:

We say that a set A ∈ C is:
(i) an atom of µ if µ(A) ) {θ} and for every set B ∈ C, with B⊆A, we have either µ(B) = {θ} or

µ(A \B) = {θ};
(ii) a pseudo-atom of µ if (A) ) {θ} and for every set B ∈ C, with B ⊆ A, it holds either µ (B) = {θ},

or µ (A) = µ(B);
(iii) a minimal atom of µ if µ(A) ) {θ} and for every set B ∈ C, with B⊆A, one has either µ (B) = {θ}

or A = B.

Detailed considerations on the problem of atomicity with respect to set multifunctions can be found,
for instance, in Gavriluţ and Agop, 2016, and also in Gavriluţ et al. 2019.

6.2 Towards a fractal theory of atomicity

The main idea in the quantum theory of measure and in generalized quantum mechanics is to provide a
description of the world in terms of histories. A history is a classical description of the system considered
for a certain period of time, which may be finite or infinite. If one tries to describe a particle system, then
a history will be given by classical trajectories. If one deals with a field theory, then a history corresponds
to the spatial configuration of the field as a function of time.

In both cases, the quantum theory of measure tries to provide a way to describe the world through
classical histories, extending the notion of probability theory, which is obviously not enough to shape our
universe.

On the other hand, ordinary structures, self-similar structures etc. of nature can be assimilated to
complex systems, if one considers both their structure and functionality (Gavriluţ and Agop, 2013).

The models used to study the complex systems dynamics are built on the assumption that the physical
quantities that describe it (such as density, momentum, and energy) are differentiable. Unfortunately,
differentiable methods fail when reporting to physical reality, due to instabilities in the case of complex
systems dynamics, instabilities that can generate both chaos and patterns.

In order to describe such dynamics of the complex systems, one should introduce the scale resolution in
the expressions of the physical variables describing such dynamics, as well as in the fundamental equations
of the evolution (density, kinetic moment and equations of the energy). This way, any dynamic variable
which is dependent, in a classical sense, both on the space and time coordinates, becomes, in this new
context, dependent on scale resolution as well.

Therefore, instead of working with a dynamic variable, we can deal with different approximations of
a mathematical function that is strictly non-differentiable. Consequently, any dynamic variable acts as
the limit of a family of functions. Any function is non-differentiable at a zero resolution scale and it is
differentiable at a non-zero resolution scale.

This approach, well adapted for applications in the field of complex systems dynamics, in which any
real determination is made at a finite resolution scale, clearly involves the development of both a new
geometric structure and a physical theory (applied to the complex systems dynamics) for which the motion
laws, that are invariant to the transformations of spatial and temporal coordinates, are integrated with
scale laws, which are invariant to transformations of scale.

Such a theory that includes the geometric structure based on the assumptions presented above was
developed in the scale relativity theory and, more recently, in the scale relativity theory with constant
arbitrary fractal dimension. Both theories define the class of fractal physics models.
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In this model, it is assumed that, in the complex systems dynamics, the complexity of interactions is
replaced by non-differentiability. Also, the motions forced to take place on continuous, differentiable curves
in a Euclidean space are replaced by free motions, without constraints, that take place on continuous,
non-differentiable curves (called fractal curves) in a fractal space (Agop et al., 2019).

In other words, for a time resolution scale that seems large when compared to the inverse of the largest
Lyapunov exponent, deterministic trajectories can be replaced by a set of potential trajectories, so that the
notion of “defined positions” is replaced by the concept of a set of positions that have a definite probability
density.

In such a conjecture, quantum mechanics becomes a particular case of fractal mechanics (for the
structural units motions of a complex system on Peano curves at Compton scale resolution).

Therefore, the quantum theory of the measure could become a particular case of a fractal measure
theory.

One of the concepts that needs to be defined is that of a fractal minimal atom, as a generalization of
the concept of a minimal atom (for details refer to Gavriluţ et al., 2019).

Current research in mathematics and physics brings us closer to the ultimate structure of matter
and the understanding that, on the one hand, the notion of identifiable particle is becoming increasingly
irrelevant, this kind of divisions and sequencing being in fact operative notions required for experiments
and gradual understanding, rather than natural elements; on the other hand, that this approach to the
core, to the essence, reveals laws of overwhelming simplicity, and that mathematics, also scattered, in the
last hundred years, in structures and increasingly luxuriant and complex formulas, finds thus its role as an
agile, beautiful, universal language through which nature expresses itself, as Galileo used to say.

Not only nature expresses itself thus, art does, too! Here is just one example of the decomposition /
recomposition of a classic masterpiece, in the vision of Salvador Dali (see Figure 1 below):

Figure 1: Dali’s Maximum Speed of Raphael’s Madonna and Raphaelesque Head Exploding stage objects or
suspended fragments of objects reminiscent of electrons around an atom, about to aggregate into an
object, character, figure or, conversely, to decompose into an image constructed according to the rigors
of the golden ratio.

Let us leave Steven Weinberg the - provisionally - final word of this mathematical overview on the atom
and its integrative relationship with the other fields of thought and expression:

There is one clue in today’s elementary particle physics that we are not only at the deepest level we can go to
right now, but that we are at the level which is in fact in absolute terms quite deep, perhaps close to the final
source.
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There is reason to believe that in elementary particle physics we are learning something about the logical
structure of the universe at a very, very deep level. The reason I say this is that as we have been going to higher
and higher energies and as we have been studying structures that are smaller and smaller we have found that
the laws, the physical principles, that describe what we learn become simpler and simpler.
I’m not saying that the mathematics gets easier, Lord knows it doesn’t. I’m not saying we always find fewer
particles in our list of elementary particles. What I am saying is that the rules we have discovered are becoming
increasingly coherent and universal. We are beginning to suspect that this isn’t just an accident of the particular
problems we have chosen to study at this moment in the history of physics, but that there is simplicity, a beauty,
that we are finding in the rules that govern matter that mirrors something that is built into the logical structure
of the universe at a very deep level.

(Weinberg, Facing Up, 210)

7 Conclusions
After having presented the notion of the atom from a multidisciplinary and even transdisciplinary perspective,
we focused on detailing the problem of atomicity from a mathematical perspective, emphasising the fact
that an atom is a mathematical object which, in essence, has no other subobjects than the object itself
or the null subobject. We have also tried to demonstrate that, in its various forms and mathematical
meanings of being, an atom is, essentially, indestructible, indivisible, irreducible and self-similar.
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