
Sukanta Ganguly
Software Defined “X” 87

Software Defined “X”
Sukanta Ganguly, Research Engineer, San Jose, California 95120, USA, Email: sukanta@locomobi.com

doi: 10.22545/2014/00051

T
he power of computing has been realized in two
main directions, 1) The growth of hardware
devices and systems 2) The enhancements in

software technologies. The growth of hardware has
branched out into two areas, specialized hardware for
vertical focus and generic hardware with applicability
in multiple areas. While the growth in the software
arena also started in the same path the morphs that
software technologies have taken are much faster
and much more wider in scope. Hence we do see
a faster growing software economy. The Software
Defined “X” trend that we have seen has been
evolving in the last decade started getting recognition
with the Software Defined Radios (SDRs). SDRs,
which offered capabilities to make the hardware radio
frequency layer or layer 1 in the OSI stack control-
lable via software and offering the same hardware
to latch onto multiple radio frequency channels led
the way to more software defined technologies to be
researched and invented. In this paper we would
study the Software Defined Networking effort that
has caused a major disruption in the networking
world and how it addressed a big issue that has
been lying dormant in this industry for more than
two decades. The technological innovations applied
to the Software Defined Networking segment helps
build-out a wider industry application base, hence
creating a level playing field for a larger yet targeted
software application base helping the consumers get
better choices to decide on their consumption needs.

Keywords: Software, networking platform,
network policies, networking systems.

1 Introduction

Software Defined “X” is a means for disruptive forces
to push innovation in areas that were rigid and struc-
tured via hardware as the fundamental basis for
development. We have seen a tremendous growth
in software and hardware in the last decade. The
growth has been backed by the insatiable demand
for computing in not only the normally existing ar-
eas where computing usage has been a key driver
but also areas where computing could be used for
various reasons ranging for feasibility, form-factor,
practical closures of the applications, connectivity,
lack of reasonable interfaces, etc. The growth also
has seen multiplicative effect with the revolution of
hardware and software innovations. We will focus in
the Software Defined “X” with some details covering
the Software Defined Networking area, but we will
also expand into other areas of Software Defined
technology innovations.

Networking itself is a wide area to cover and we
will talk about the Wide Area Networking, which
has seen a lot of research and applications already
actively deployed. We will address aspects of Secu-
rity, Wireless Networking and Storage as well. The
basic definition of software driving functionalities
within hardware on which is operates is not a new
area. We find that the last decade or so we have
seen more software penetration of software in con-
trolling hardware. Hardware has always existed as a
purpose built entity, architected, designed and de-
veloped for a specific job. Due to the way hardware
gets designed and developed it is difficult to bring
in changes into the functionality of hardware easily

Transdisciplinary Journal of Engineering & Science
ISSN: 1949-0569 online

Vol. 5, pp. 87-94, (December, 2014)



Sukanta Ganguly
Software Defined “X” 88

Figure 1: Software defined networks.

and in less time. The arduous process involved in
designing a good hardware system makes it difficult
to make changes on the fly. Software, on the other
hand, has different characteristics. Software reuse is
a very important characteristic of a good software
design. Given that modularity and reuse are impor-
tant items that software industry as followed making
changes and getting newer and different implemen-
tations to be added are expected modes of software
driven operations.

2 System Elements

Software defining [3, 5] functionalities have been
experimented in many areas. It starts with things
like languages [3] and frameworks [7] that are used
to develop these software systems. Languages used
to build new software defined modules are domain
centric hence of the language constructs [3, 8] will be
more application centric. Domain-aware program-
ming languages were developed to make it easy to
program applications with constructs that are di-
rectly applicable to the applications with the specific
domain. In [3] the authors present a domain specific
language used to develop software defined networking
applications. Software Defined Networking platform
is being designed to house new applications along
with the existing ones with certain structural pro-
gramming model changes that will help evolve and
expose things within networking framework which
were considered hard-wired. Although the charac-
teristics of the networking framework don’t change
the ways the functionality is exposed and managed
change significantly.

Pyretics [16] policy language has a number of fea-
tures that are designed to make it easy to construct
and combine policies in a modular way. Most net-
works perform multiple tasks, such as routing, mon-
itoring, and access control. Ideally, programmers
would be able to implement these tasks indepen-
dently, using separate modules. But the program-
ming interfaces available today make this difficult,
since packet-handling rules installed by one module
often interfere with overlapping rules installed by
another module. It allows the networking switch to
do the following; ‘query the current network state’,
‘express new network policies’ such that the network-
ing data plane reacts according to the fed in policies
and ‘reconfigure the network’ such that different be-
havior can be implemented. All of these can be done
on an ad-hoc basis and fed into the switches in real
time. There is no downtime expressed in reprogram-
ming the network. With the help of the language
the authors have created a new environment for the
applications to be created by many programmers
who are not original owners of the network switch.
The abstractions offered helps reduce the barrier to
creativity.

In Figure 1 above, using Pyretics applications
like Monitor (monitors traffic flowing through the
network switch), Route (feeds in specialized routes
that are manually injected for traffic to follow instead
of routes being discovered from within the network),
etc. An application developer can easily use the
Pyretics language to develop simple applications
that can be developed externally and injected into
a switch that is complaint with the framework. A
two-tiered software framework is shown with the

Transdisciplinary Journal of Engineering & Science
ISSN: 1949-0569 online

Vol. 5, pp. 87-94, (December, 2014)



Sukanta Ganguly
Software Defined “X” 89

Table 1: Sample programming.

Syntax Summary
identity returns original packet
drop return empty set
match (f = v) identity if field matches v, drop otherwise
modify (f = v) returns packet with field f set to v
fwd(a) modify (port = a)
flood () returns one packet for each local port on the network spanning tree

architecture.

A domain specific syntax supported by the Pyretic
language is shown Table 1. A subset of syntax is
listed on the left hand side of the diagram. As the
syntax suggest they are very specific operations that
can be closely tied to the network switch domain. For
e.g. the syntax ‘flood’ is generally used to broadcast
the same packet across all the networking ports
within the switch. The syntax ‘drop’ is used to drop
a packet once it is received on a port. There could
be qualifiers that can be passed to make sure that
the action of dropping a packet is performed after
certain filters are matched. The syntax ‘modify’
would allow for a modification of packet content by
replacing one or more field values with another. The
syntax ‘fwd’ would instruct the system to forward a
specific type of a packet to be forwarded to a specific
port. The forwarding of the packet to a port can be
time driven or with certain matching fields values.

Languages play a strong part in building software-
defining actions within the network segment and sev-
eral others segments has had languages with syntax
that are applicable for their domains. Such domain
specific languages do form framework and/or plat-
form via which such value-added applications can
be developed. The frameworks generally come with
the language syntaxes and interpreter or compiler
arranged to create intermediate binary.

Software defined systems required modes in which
new software base logic can be injected within an
existing, live environment. This fundamental need
exist no matter which domain it has been applied to.
The model of building software needs modularity in
such environment where software components are
decomposed into smaller modules. These smaller
modules can be replaced; enhancement or new con-
trol flows can be inserted or added into the system.
Those derivations help upgrade, make it more rel-
evant per target applications, or morph the device

for business relevant needs.

3 Application Domains

Various application domains have already seen early
stage impacts of software defined networking ar-
chitectures being implemented. Some of the areas
where Software defined solutions are being actively
researched and implemented and discussed in this
paper are Wide Area Networking[9, 11] (WAN), Op-
tical Networking Transport [5], Soft-Radio imple-
mentation[1], Orthogonal Frequency based wireless
encoding [2, 15], Storage Networking [12, 14].

Wide Area Networking systems are a critical piece
of the entire Internet connectivity to be maintained.
A good operating WAN needs to have a uniform
utilization across all the links in a WAN. High uti-
lization requires frequent updates to the networks
data plane. The data plane is the path where data
traffic flows in real time. The data plane is estab-
lished during a flow when the path is discovered via
the route discovery process. Changes in traffic de-
mand based on flow needs as well as changes in the
network topology based on route outages or reroutes
based on policy changes are common in WAN. A
key challenge is to implement these updates without
causing transient congestion that can hurt latency-
sensitive traffic. The underlying problem is that the
updates are not atomic, as they require changes to
multiple switches in the network. Even if the before
and after states are not congested, congestion can
occur during updates if traffic that a link is supposed
to carry after the update arrives before the traffic
that is supposed to leave has left. The extent and du-
ration of such congestion is worse when the network
is busier and has larger RTTs (which lead to greater
temporal disparity in the application of updates).
Both these conditions hold for our setting, and we
find that uncoordinated updates lead to severe con-

Transdisciplinary Journal of Engineering & Science
ISSN: 1949-0569 online

Vol. 5, pp. 87-94, (December, 2014)



Sukanta Ganguly
Software Defined “X” 90

Figure 2: Software networking in virtual machine clusters.

gestion and heavy packet loss. Some of the issues
that need to dealt with are fully using network ca-
pacity requires many forwarding rules at switches, to
exploit many alternative paths through the network,
but commodity switches support a limited number
of forwarding rules.

Analysis of a production inter-data center WAN
shows that the number of rules required to fully use
its capacity exceeds the limits of even next gener-
ation SDN switches. We address this challenge by
dynamically changing, based on traffic demand, the
set of paths available in the network. On the same
WAN, our technique can fully use network capacity
with an order of magnitude fewer rules. Due to the
distributed approach of rules designed it is possible
to have them farmed properly to the right links. The
distribution of the rules relevant for specific segment
can be fed into the system. WAN optimization is
quite a challenging problem as the state of a link
within a WAN segment changes constantly. Due to
the change it is hard to predict what type of rules
will have what impact for any route flows. Any ap-
plied rule will have to deal with re-prioritization of
traffic flow of some type(s) and rerouting the flows
can create turbulence within the entire WAN.

Storage Networking and IO’s within a storage area
network has some very interesting applications that
software defined networking can bring to the table.

Storage area networks deal with IO traffic from the
application to the storage systems. These storage
entities are network attached at various levels within
the network stack. Each class of storage device has
its own performance criteria called ratings. The
ratings are utilized in architecting a storage network-
ing sub-system. Software defined systems within
a storage networking area helps in building frame-
works which can be used in developing dynamic data
and IO flows. Virtual Machines are a big factor
in data centers and enterprise networks. Storage
systems are decoupled from compute systems and
in the world of virtualizations compute nodes, IO
nodes and application processing can all be virtual-
ized. This virtualization provides some very exciting
ways for applications to be consuming storage and
networking resources. Figure 2, shows an example
of application farm or cluster virtualized from the
compute nodes that they will be using as well as the
IO nodes that will be used during the functioning
of the application. As is shown in the figure, the
application(s) are not tied to one specific compute
entity or a one specific storage block. Due to abstrac-
tions being introduced within the layers it is possible
to decouple them and perform dynamic mappings
based on the needs of the applications and the time
the application is running. A policy engine is needed
to facilitate policies that can be injected into the

Transdisciplinary Journal of Engineering & Science
ISSN: 1949-0569 online

Vol. 5, pp. 87-94, (December, 2014)



Sukanta Ganguly
Software Defined “X” 91

system. Some policy implementation is dynamic
and some are static. Static policy engine need the
system to be bootstrapped with the policies already
fed into it. The ones that support dynamic injection
of policies add more dynamism within the entire
storage-networking framework.

Implementations of policies act as key driver into
the software defined networking systems. Although,
policy based networking existed for a much longer
time than Software Defined Networking, what allows
the policy engine implementation to be adding more
value is for the system behavior change that can
be implemented with and SDN is far more granular
and more impactful for applications to leverage the
environment. The customizability from the run-time
point of view is far more superior with SDNs. Appli-
cation level queues as well as system level queues are
introduces at the end-points where policies are imple-
mented. While network devices have implemented
queue management algorithms based on network
traffic, i.e. packet header inspection, for storage net-
working these are not that easily implementable per
existing architectures. Some of the limitations may
be due to changes in packet envelope data identi-
fiers, which impact the forwarding on a link-by-link
basis. Hence uniform policies can be devised and
pushed into the storage networks. One of the key
expectations of the queues would be to make sure
rate limiting behavior is expected on the type of the
queue. Rate limiting is hard in traditional storage
networks due to the unpredictable relationship be-
tween processing of the request and the rate at which
IO is consumed. Factors that effect these could be
data locality, ratings of the actual physical block on
which data resides, the type of virtualization layer
that will be encountered within the IO stack, etc.
Given all these, various types of controls need to be
added at various IO processing layers as well as at
different systems, some closer to the hardware and
some much higher and distributed within the entire
system. The distributed nature also adds additional
network traffic for proper compliance of the system.
With SDN mode of development the modularity and
the abstractions are built per the specific infrastruc-
ture and as the storage network topology changes, it
can be reconfigured and reprogrammed with extreme
ease.

In Figure 2 we see that the applications use com-
pute resources as deemed required from the compute
pool and the storage pool provides its applicabil-

ity per the need from the applications. The vir-
tualization layer that exists between these layers
is completely transparent to the application. As
software developers design their application there is
cognizance of realistic limits of resources availabil-
ity but no practical programming models offer ways
to limit the implementation based on the restric-
tions made available. Furthermore, the restrictions
change depending on the state of the environment.
Virtualization leads to multi-use and multiplexing
of resources and hence workload prediction becomes
really hard. Multi-tenancy within these environ-
ments makes it even harder to manage resources and
user experiences. The application server instance
becomes the front-end for the abstracted storage
volumes and the compute processing nodes. Storage
is usually virtualized i.e. a VMs are often unaware of
the details of the interconnect fabric and the storage
configuration. Virtual machines are presented with
virtual hard disks that will simplify large files on
the storage servers. These types of storage virtual-
ization will reduce the complexity of management
like volume and block migration including the entire
virtual machine migration.

Wireless networking [2, 15] has seen some research
and investigations of software-defined environments
to figure out the benefits for this domain. Wire-
less networking, in this discussion applies to all the
ranges of RF protocols in the wireless domain that
is in business play, like 2.4 GHz, 5.0 GHz. As other
frequency bands get into the consumption range sim-
ilar work may be applicable to them, albeit there
may be some new protocol related optimizations that
may be special to the new frequency bands that are
difficult to generalize.

Figure 3(a) shows an SDN controller for a wire-
less controller. In this example we show a controller
software stack with some of the major components
and their layering. For this discussion we will ig-
nore the physical layer and the media access control
layer as well as their software/firmware modules in-
cluding the encoding/decoding methods. The SDN
controller is the main software block, which coordi-
nates with the end-points in its range. The controller
has a important task of coordinating with the end-
points, reading their current status, making sure
any network policies are passed on to the end-points
and they are implementable. Like an air-traffic con-
troller it handles reroutes, end-to-end discoveries
and destination knowledge.

Transdisciplinary Journal of Engineering & Science
ISSN: 1949-0569 online

Vol. 5, pp. 87-94, (December, 2014)



Sukanta Ganguly
Software Defined “X” 92

Figure 3: (a) SDN controller for a wireless networking environment, (b) SDN endpoint of a wireless networking
environment.

Figure 3(b) shows the SND endpoint devices soft-
ware stack. As in the case of Figure 3(a), this is
also one specific design listing the major software
modules or components. There can be many more
low-level details that may or may not be listed here
and other designs may have emphasis which is either
not listed here or not relevant for our discussion.

The system applications layer is the main target
module that houses the details of the endpoint sys-
tem logic. One of the key functionality the endpoint
performs is packet forwarding. The process of for-
warding includes making changes in the meta-data
of the packet. Most of the endpoints do not function
as a bridge and hence no bridging logic is added into
it. The controller plays and important to make a
decision as to which endpoint should get the packet.

The wireless networking infrastructure when de-
ployed has the goals of making sure packets over
the RF channels moves from the sender to the net-
work backhaul or to the same RF channel to reach
the destination. While doing this, it also has to
make sure that the local information from the end-
points are collected and forwarded to the central
controller, which can either use the data or forward
it to the aggregated uplinks. This is also called
topology discovery process. In the wireless network-
ing world where the endpoints are not tethered to
specific locations or switches we do expect them to

move and the moves can be as complex as going
from one controller administrative zone to another
one or zone hopping. The process of communica-
tion between the endpoint and a controller requires
each endpoint to know which exactly is its primary
controller. Since the endpoints typically work with
one and only one controller the primary controller
is the only controller. Beacon packets are generated
by the endpoints that are broadcasted. The beacon
packets have values like the receive signal strength
indicator, battery power, etc. Through the beacon
packet broadcast all the other nodes deduce the hops
to reach each other. The endpoints store the infor-
mation about its neighbors in a local table that it
shares with the controller from time to time. The
central controller deduces the network topology at
any point in time with the help of the information
it collected form the local tables received from the
endpoints.

With a programmable interface that allows sys-
tems software to be embedded within the network
controllers, which in turn feeds them into the end-
points we can form a real-time and dynamically
reacting wireless environment. The behavior shown
via these systems can change its functionalities and
the total system behavior at any point in time, which
is not possible in the current systems. New ranges
of protocol and implementation design are being

Transdisciplinary Journal of Engineering & Science
ISSN: 1949-0569 online

Vol. 5, pp. 87-94, (December, 2014)



Sukanta Ganguly
Software Defined “X” 93

researched as well as accepted within the wireless
networking domain to create reactive systems with
low latency impersonations being injected into the
environment.

4 Technology Impact

The SDN framework, which is appearing in terms
of software system that is domain independent as a
base yet has many different vertical segment impacts
are creeping in from research world into the con-
sumer/business world. It has started making waves
in environments where things were expected to be
rigid and fixed in nature. It has brought into light
the gains that can be shown and the richness that
can be housed within systems that are not point
and packaged products anymore but play-beds for
real-time changes based on environment where it
is exercised. These environments are rich and real.
They are live and yet changeable. The amount of
research in technology in various areas of computing
has given rise to tremendous amount of cross-domain
innovation.

Businesses deal with the innovation in terms of
new products that are created and evolved into the
market place. Research leads the way and business
follows one research stabilizes and has end systems
that can be build and deployed in the real world.

5 Conclusion

Software-Defined Network and Software defined
frameworks to be more generic lead to things that
can be created from within the existing systems.
SDN does not proclaim change in the functionality.
It only lays new ideas and new ways for make sys-
tems more agile and reactive to the environments
that need them. These changes are valuable in end
up creating new market segments. It allows existing
markets to grow and help us provide better modes
of learning new things and implementing new things
can result in better and smarter utilization. The non-
existence of these modes of operations was due to
the fact that the level of maturity in protocols, hard-
ware architecture, communicating interfaces were
not taken into account at atomic levels. The trans-
formations of the same components were due to
the fact that the system was decomposable and the
decompositions helped it to evolve into actionable
elements that can be externally interfaced.

SDNs have already seen quite a bit of growth
over the last few years. With the maturity in some
areas and with the understanding of SDN in multiple
domains the rate at it could grow is far more effective.
It has demonstrated some of its values in domains
that were well mature already. It has opened doors
for innovation and refueled the market with new
ideas that has started the process of rejuvenation of
the technology. We see this effecting academia as
well as the industry.

References

[1] Shriram K. V., Sivaraman R., Alex, Z. C., 2012.
Software defined radio implementation (with simula-
tion and implementation). International Journal of
Computer Applications (IJCA) ISSN: (0975 - 8887),
Vol. 4, No. 8, Aug 2010.

[2] Yun, M., Yuxin, B., 2010. Rapid prototyping of a
SDR based reconfigurable MIMO-OFDM testbed.
SDR’10 Technical Conference, Washington, DC.

[3] Foster, N., Freedman,J. M., Guha,A., Harrison,
R., Praveen K. N., Monsanto, C., Reich, J., Re-
itblatt, M., Rexford,J., Schlesinger, C., Story, A.,
Walker,D., 2013. Languages for software-defined net-
works. IEEE Communications.

[4] Kreutz, D. Fernando, M. V. Ramos, Verissimo,P.,
2013. Towards secure and dependable software-
defined networks. HotSDN’ 13, ACM 978-1-2178-
5/13/08.

[5] Gringeri, S., Bitar, N., Xia, T. J., 2013. Extending
software defined network principles to include optical
Transport. IEEE Communication Magazine, March.

[6] Ma, N. Lu, Z., Pang, Z., Zheng, L., 2010. System-
level exploration of mesh-based NoC architectures
for multimedia applications. IEEE Internation SOC
Conference, pp. 99-104.

[7] McGeer, R., 2012. A safe, efficient upate protocol
for open-flow networks. HotSDN’ 12, ACM 978-1-
4503-1477-0/12/08, Helsinki, Finland.

[8] Kazemian, P., Varghese, G., McKeown, N., 2012.
Header space analysis: static checking for networks.
Usenix Conference on Network Design and Imple-
mentation.

[9] Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski,
L., Singh, A., Venkata, S., Wanderer, J., Zhou, J.,
Zhu, M., Zolla, J., Holzle, U., Stuart, S., Vahdat,
A., 2013. B4: Experience with a globally-deployed
software defined WAN. SIGCOMM’ 13, Hong Kong,
China, ACM 978-1-4503-2056-6/13/08.

Transdisciplinary Journal of Engineering & Science
ISSN: 1949-0569 online

Vol. 5, pp. 87-94, (December, 2014)



Sukanta Ganguly
Software Defined “X” 94

[10] Gude, N., Koponen, T., Pettit, J., Pfafe, B., Casado,
M., Mckeown, N., Shenker, S., 2008. NOX: towards
an operating system for networks. SIGCOMM’ CCR,
July.

[11] Hong, C., Kandula, S., Mahajan, R., Zhang,M., Gill,
V., Nanduri, M., Wattenhofer, R., 2013. Achieving
high utilization with software-driven WAN. SIG-
COMM’ 13, Hong Kong, China, ACM 978-1-4503-
2056-6/13/08.

[12] Thereska, E., Ballani, H., O’Shea, G., Karagian-
nis, T., Rowstron, A., Talpay, T., Black, R., Zhu,
T., 2013. IOFlow: A software-defined storage ar-
chitecture. SOSP’ 13, Farmington, PA, USA, ACM
978-1-4503-2088-8/13/11.

[13] Ballani, H., Costa,P., Karagiannis, T., Rowstron,
A., 2011. Towards predictable datacenter networks.
ACM SIGCOMM’, Toronto, Ontario, Canada, pp.
242-253.

[14] Volk, T., Frey, J., 2014. Obstacles and priorities on
the jurney to the software-defined data center. An
Enterprise Management Associates Research Report
January.

[15] Costanzo, S., Galluccio, L., Morabito, G.,
Palazzo, S., 2012. Software defined wire-
less networks: unbridling SDNs. IEEE DOI
10.1109/EWSDN.2012.12.

[16] Reich, J., Monsanto, C., Foster, N., Rexford, J.,
Walker, D., 2013. Modular SDN programming with
pyretic. Login Magazine, 38(5), pp. 128-134.

About the Author

Dr. Sukanta Ganguly is a technocrat and has been an
entrepreneur forming new businesses. He as taken ideas
from concept to a product with go-to-market business
planning and revenue modeling for several businesses.
He has a Doctorate in Engineering from Texas Tech
University in Transdisciplinary area with concentration
in the Semantic searching, Data-mining with Context-
aware information retrieval. He has an MBA in Finance
and a Masters in Computer Science. He has published
three books and many academic papers and has been
granted several patents.

Dr. Ganguly has 20 years of industry experience.
He focuses in the areas of Network & Data Security,
Data/Information mining, multi-media protocols and
model driven applications.

Copyright c© 2014 by the author. This is
an open access article distributed under
the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and
reproduction in any medium, provided the original
work is properly cited.

Transdisciplinary Journal of Engineering & Science
ISSN: 1949-0569 online

Vol. 5, pp. 87-94, (December, 2014)


