
Lonney J. Head
Legacy Interface Adapter Design Modeling 157

Legacy Interface Adapter Design
Modeling: Part-I
Lonney J. Head, Raytheon Company, Dallas, Texas, USA

doi: 10.22545/2015/00059

T
echnology is changing at a very rapid rate.
Many deployed/fielded information systems
are aging and becoming legacy systems

that continue to operate and perform as required.
However, as time goes by, maintainability of
these systems is becoming an increasing issue.
Also, the dissemination of information and data
from the legacy systems to modernized systems is
becoming more prominent within industry. With
the technology evolution, there is a need to adapt
legacy systems to modern architected systems. The
objective of this project is to educate the reader about
available design considerations and processes to
consider when developing an adaptor type interface
with a legacy system. An interface adapter example
is utilized throughout this paper to provide the reader
with sufficient information to get started on their
own design. This paper is intended to visit several
design topics and processes; component-oriented
axiomatic design, architectural considerations, and
project planning. Through the survey of these topics,
the reader will have a framework and a model in
which to get a head start. Many of these topics are
cross disciplinary in nature and may be used with a
variety of systems.

Keywords: Legacy system, adapter software
design, axiomatic design .

1 Introduction

Customers who operate existing legacy data pro-
cessing systems often have a need to interface those
existing legacy systems to new or replacement sub-
systems. Legacy systems often provide stable low
cost processing, but they may need to interface with
new/replacement subsystems.

These new or replacement subsystems by their na-
ture utilize more current technology than the legacy
system. However, attempting to modify the legacy
system directly to interface with the newer subsys-
tem causes an undesirable and often unaffordable
ripple of change in the legacy system. Hence, a need
arises for an Interface Adapter that fits between
the legacy system and the newer subsystem. The
adapter can absorb the ripples of change so the newer
subsystem can be designed taking advantage of the
newest available technology and the legacy system is
either not impacted or minimally impacted by this
interface modification.

This paper leverages the axiomatic design of the
Interface Adapter Software Design (IASD) project.
The set of customer needs, Functional Requirements
(FRs), Design Parameters (DPs) and Constraints
applicable to an IASD were developed and will be
utilized to the fullest extent. The full design process,
description of customer needs (CNs), Functional Re-
quirements decomposition process, associated Design
Parameters and Requirements traceability matrix
are described in Chapter III.

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 158

Figure 1: Axiomatic design domains involved in the IASD design [Tate, 2006].

The vertical requirement decomposition
method/tool is utilized to decompose the system
design requirements. The first level requirements
are developed to describe the highest level of the
design description, and an initial/high level design
matrix is developed and decoupled to start the
hierarchical vertical decomposition approach. An
iterative decomposition analysis approach is utilized
to refine the various levels after analyzing coupling
in the design matrices.

Although this paper is based around the IASD de-
sign using component oriented axiomatic design tech-
niques, architectural considerations are leveraged in
order to validate the design and to systematically
develop the design to a level that could lead directly
to implementation.

2 Interface Adapter Software
Design (IASD)

2.1 Component Oriented Axiomatic
Design

Component Oriented Axiomatic Design is an ap-
proach that utilizes specific processes to develop
a system design to the component level while check-
ing for missing components. Identifying missing
components early in the design process is crucial to
maintain cost, stay on schedule and enhance perfor-
mance on the project. Also, missing a component
may be detrimental to the success of the project.

The earlier missing components are found during
the design process, the less time and money that
are spent later in the project lifecycle. The design
team should consider keeping the customer informed
throughout the design process or, better yet, have
them actively participate on the team.

2.2 Architectural Considerations

The second approach described in this paper uti-
lizes an architectural design approach that combines
contextual, operational, logical and physical data to
provide a base architecture. This approach, similar
to the axiomatic design approach, uses customer
needs and requirements as a basis for the archi-
tecture of the system. The difference between the
two methods is the detailed processes utilized to de-
scribe each part of the system. These details allow a
smooth transition to system hardware and software
development.

2.3 Project Planning

Project planning occurs throughout all stages of
project and is considered an evolving process. How-
ever, it is important to put together an initial project
master plan and integrated master schedule. This
is essential to successful project start up and initial
project execution. Although it is highly probable
that changes will occur during project execution for
various reasons, continual adaptation of the master
plan and schedule are essential for project comple-

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 159

tion. The IASD project Integrated Master Plan
(IMP) and Integrated Master Schedule (IMS) are de-
veloped in this paper so that the reader may gain an
understanding of how to approach project planning
in a systematic manner.

3 Component Oriented Axiomatic
Design

This paper uses axiomatic design techniques to
present such an Interface Adapter Software Design
(IASD). The report iteratively develops a list of
customer needs, Functional Requirements, Design
Parameters and Constraints applicable to an IASD
and analyzes the design steps pointing out desir-
able and undesirable characteristics. The axiomatic
design approach is presented in Figure 1.

3.1 Defining Customer Needs

The project objective is to design an interface be-
tween an existing legacy data system and multiple
modernized data systems with specific interface re-
quirements. This project utilizes the Component-
Oriented Axiomatic Design (COAD) process to pro-
vide the best possible design decisions based upon
customer needs and decomposed functional require-
ments. The customer vision is to, “provide a reliable,
cost effective mechanism to interface a legacy data
system to a modernized data system with minimum
disruption to ongoing operations.”

The customer needs were identified through
brainstorming sessions and reviewing past industry
project experiences. Customer needs would normally
be determined in projects of this category by a con-
sortium of personnel including:

• System design engineers

• Legacy knowledgeable systems engineers

• New subsystem design team

• Software engineers and architects

• Network engineers

• Field personnel who operate or maintain legacy
systems

• Program management, scheduling, budgeting,
etc.

The scenario under examination is a legacy sys-
tem in which a subsystem is identified and replaced.

This new, replacement subsystem uses current com-
munication technology and protocols but the legacy
system operates older technology. The primary de-
sire is to develop a testable adapter to translate the
two communication protocols (old and new).

3.2 Customer Needs and Constraints

The following information describes an initial list of
customer needs, known or agreed constraints and
definitions/declarations.

1. Adapter shall access subsystem replacement.

2. Adapter shall interface legacy system to subsys-
tem replacement using specified communication
protocols.

3. Customer needs a subsystem replaced because
manufacturers are not supporting aging parts of
system and/or customer needs to migrate parts
of system to newer and more flexible technology
and make software based.

4. Customer needs more functionality but the
legacy system contains subsystems that are func-
tionally limited.

5. Limited funding exists for overhauling the entire
system so focus is on subsystem replacement
which is more cost effective.

6. Customer needs additional functionality added
to the system.

7. The customer needs more current technology
for the resulting functionality improvement.

8. Various stakeholders need to be able to test the
new subsystem in a stand alone configuration
(without access to the legacy system).

9. Various stakeholders need to be able to verify
requirements of a new subsystem by having
visibility to data-flow within the adapter.

10. Customer needs to utilize standardized technol-
ogy to make development more cost effective
and gain more functionality (get more for less).

11. The current legacy system is incompatible with
newer COTS products.

12. The Customer needs data flow improvement
to take advantage of increased bandwidth and
capacity of communication equipment, (i.e. net-
work switches).

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 160

Figure 2: Grouped customer needs.

13. Customer needs to reduce equipment footprint
size to use less space.

14. Customer needs reduced power requirements.

15. Customer needs reduced heat generation.

16. Customer needs improved reliability.

17. Customer needs improved maintainability.

18. Customer needs system availability to be at
least as good as the current system (24x7 with
scheduled maintenance periods - 1000 hours or
better continual uptime).

19. Adapter shall be considered part of legacy sys-
tem.

20. If one subsystem channels connectivity is lost,
the system considers all are lost.

21. If no response is received from the subsystem or
connection is lost on any of the multiple com-
munication channels, all communication with
the subsystem is halted.

22. Legacy interface is TCP-IP socket based.

23. Secondary interface shall be Service Oriented
Architecture (SOA).

24. Adapter shall be software based running on a
standard computer platform.

25. Adapter shall maintain SOA connectivity with
Naming Service to resolve single server.

26. Adapter shall provide a sustainable TBD com-
mands per second commanding rate.

27. Adapter design shall scale to match available
hardware.

28. For operational mode, adapter does not have to
operate if legacy system is not available.

29. Publicly exposed data references in the adapter
should be protected (not deleted).

30. Adapter shall trace events to provide diagnostic
access to processing.

31. Test scenarios shall utilize the legacy interface of
the adapter to test the adapter and subsystem.

The list of customer needs is then grouped into
higher level categories. These categories are areas
of interest that describe the higher level needs by
the customer. This method also helps flush out con-
straints that may affect the overall design of the final
system. Figure 2 shows the KJ diagram related to
the Customer Needs described above. It is often help-
ful to view the relationships between the customer
needs and the categories into one diagram for quick
identification of customer needs and constraints.

3.3 Mature Domain

Using knowledge from experience and technology
used in similar systems, the following diagrams were

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 161

Figure 3: Mature domains (platform).

Figure 4: Mature domains (COTS & Software).

developed to show possible mature domains that
could be incorporated into the design. These do-
mains will be used to further develop requirements
and design parameters. The platform technologies
listed in Figure 3 and the COTS and Software tech-
nologies listed in Figure 4 show mature domain com-
ponents that map to the IASD requirements. This
provides a component relationship of the IASD re-
quirement so existing mature domain components
already available in the industry. These mature do-
mains change over time due to the rapid changes
in technology, so taking a snapshot in time may
lead to changes down the road. As in the descrip-
tion of “legacy system”, today’s mature domains are
tomorrows legacy domains.

The following Constraints emerged during the ini-
tial stage of the axiomatic design process. The con-
straints are derived through the analysis of customer
needs and act of mapping them to the mature do-
main components categorized for this application.
Constraint C10 emerged later in the design process.

• C 1 Legacy interface shall be TCP-IP socket
based.

• C 2 Secondary interface shall be SOA.

• C 3 Adapter shall be software based running on
a standard computer platform.

• C 4 Maintain SOA connectivity with Naming
Service.

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 162

Figure 5: Base IASD design.

• C 5 Provide a sustainable TBD commands per
second commanding rate. C 6 Provide for 24
hour, 7 day per week duty cycle with a MTBF
(Mean Time Between Failure) of 1000 hours or
better.

• C 7 Scalable to match available hardware.

• C 8 In operational mode, adapter does not have
to operate if legacy system is not available. C 9
Protect (do not delete) publicly exposed data
references in adapter.

• C10* Event log service is available to all parts
of the adapter for logging trace events.

These system constraints define the adapters func-
tional bounds. They also define the inputs for which
the adaptor is responsible.

3.4 Functional Requirements and Design
Parameters Decomposition

The adapter is assumed to operate between the
legacy and the new subsystem where it can translate
data transmitted in either direction. This position
also allows a legacy driver to be connected to this
adapter for testing and operation without the need
for the legacy system. Figure 5 shows the relation-
ship between the legacy system, adapter (IASD) and
a new subsystem.

As shown in Figure 1, Functional Requirements
(FRs) are developed from Customer Needs (CNs)
and Design Parameters (DPs) are developed from
the FRs. Each FR captures the concise scope of
functions for the given level. Keeping a focus on cus-
tomer needs insures all system needs are accounted
for.

In this case, DP development evolves easily from
FRs with the perspective that a DP satisfies every-
thing within the scope of the FR. When the Design
Matrix is used to examine coupling, the scope of
DPs is made much clearer. This exposes the DP
to multiple FR mappings. This process reveals ad-
ditional information about the FRs (i.e. definition
is too broad, functionality is excessive, or that the
definition is optimal). By iteratively going over a
level of FR/DP development based on Design Matrix
analysis, a more sound design is realized as more
concise FRs/DPs are realized.

Note: In the next sections, the FR and DP num-
bering scheme is formed as follows; < Level−1 > . <
Level−2 > . < Level−3 >. The sub-level numbers
are sequential for the entire level to reflect a FR or
DP at the given level, not within the higher levels
FR/DP. This numbering scheme is preferable when
working with design matrices, specifically when a
matrix needs to be manipulated into lower triangular
form.

3.4.1 Level 1 FRs/DPs

The following FRs are derived for the first level. The
primary function of the adapter is to translate data
between two interfaces and secondarily provide a
user interface for testing the new subsystem.

• FR 1 Interface a legacy system to an upgraded
subsystem.

• DP 1 Data Translator Adapter.

• FR 2 Provide a user driven stand-in legacy
driver for testing and verifying new subsystem.

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 163

• DP 2 Legacy Interface Test Driver and Status
GUI.

This matrix shown in Table 1 represents the decou-
pled relationship between FR1/DP1 and FR2/DP2.
This could have been a completely uncoupled matrix
(Xs only in diagonal locations), except to satisfy the
legacy interface test driver requirement, FR2; the
GUI must have access to the Adapter.

3.4.2 Level 2 FRs/DPs

The following level 2 FR/DP pairs are derived by
analysis of the customer needs. In this case, the
foundational functionality emerged from brainstorm-
ing the logical separations. Since it is assumed the
implementation of the adapter is completed using
a standard software language, the level 2 DPs are
envisioned as primary functional components in a
software design framework.

• FR 1.1 Provide legacy interface to receive and
transmit data with legacy system.

• DP 1.1 Legacy Interface.

• FR 1.2 Provide Subsystem interface to receive
and transmit data with the new subsystem.

• DP 1.2 Subsystem Interface.

• FR 1.3 Translate/manage entire adapter func-
tionality

• DP 1.3 Adapter Manager

• FR 1.4 Data needs to be inspected and checked
against state of data on subsystem interface to
determine where a message should be routed
(message dependent or independent of current
state)

• DP 1.4 Data Marshaller to determine routing
to subsystem

• FR 2.5 Operate adapter via legacy driver with-
out legacy system being available

• DP 2.5 Legacy Driver / GUI Portal

Reworking the matrix into lower triangular form
in Table 2, the following decoupled version shown in
Table 3 is obtained. The Adapter Manager obviously
has a lot of coupling to the rest of the system, but
this is by intent to try to keep other parts focused
on specific functions. This coupling and others may
be reduced during the level 3 FR/DP analysis.

3.4.3 Level 3 FRs/DPs

The following level 3 FR/DP pairs are also derived
by analysis of the customer needs.

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 164

• FR 1.3.1 Configure adapter using a configura-
tion input

• DP 1.3.1 Configuration File

• FR 1.1.2 Interface with Legacy System to trans-
fer data to/from adapter

• DP 1.1.2 Legacy Interface

• FR 1.2.3 Interface with Subsystem to transfer
data to/from adapter

• DP 1.2.3 Subsystem Interface

• FR 1.3.4 Manage conversion of data in both
directions via defined protocols

• DP 1.3.4 Adapter Manager Data Converter

• FR 1.4.5 Route data to/from multiple channels
on subsystem interface

• DP 1.4.5 Data Marshaller

• FR 1.2.6 Initialize when legacy interface is trig-
gered to be active against legacy subsystem or
test driver

• DP 1.2.6 Legacy Interface Initializer

• FR 1.3.7 Trace events

• DP 1.3.7 Event Log

• FR 1.2.8 Subsystem Interface will input config-
uration for a given number multiple channels

• DP 1.2.8 Subsystem Interface Initializer

• FR 1.5.9 Manage/coordinate initialization se-
quence of all adapter functions

• DP 1.5.9 Adapter manager Initializer FR 1.3.10
Sequence/coordinate fault recovery/response

• DP 1.3.10 Adapter Manager Fault Handler

Table 4 shows the Design Matrix realized from
the first iteration of FR/DP pairs. Tight coupling
between FR1.3.7 and DP 1.3.7 is created because
of the event tracing via an event log. This FR/DP
is removed from the matrix by defining a new con-
straint. The new constraint is added as (C10) to
ensure this need is covered and to reduce coupling
in the matrix. Since the adapter is a software based
application, a common software log service can be
made available to all parts of the system. See the
results below in Table 5.

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 165

The level 3 design matrix is then manipulated
toward lower triangular form to produce Table 6.

Before going further, the design matrix reveals
coupling that is difficult to account for in the current
level 3 FR/DP definitions. The FR/DPs involving
the Legacy Interface and the Subsystem Interface are
coupled to other parts of adapter. The single fault
handler function is a contributor to this coupling
as well as the data conversion being handled in one
location.

The analysis shifts back to reexamining the level
3 FR/DPs to more carefully look where functions
are performed against the level 2 DPs. The fault
handling is uncoupled by breaking out the respective
types of fault handling required and assigning them
to respective parts that deal with that portion of
the adapter functions. Also, the data conversion is
assigned to the respective interfaces so other parts of
the adapter do not have to be a part of the specific
data protocols.

3.4.4 Level 3 FRs/DPs (Revised and Grouped)

Legacy I/F

• FR 1.1.1 Communicate via legacy protocol on
a sequential data channel

• DP 1.1.1 Legacy protocol interpreter (built to
match spec)

• FR 1.1.2 Initialize when triggered

• DP 1.1.2 Legacy interface initializer

• FR 1.1.3 Provide interface to legacy driver

• DP 1.1.3 Legacy Driver / GUI Portal

SubSystem I/F

• FR 1.2.4 Communicate via subsystem I/F pro-
tocol

• DP 1.2.4 Subsystem protocol interpreter (built
to match spec)

• FR 1.2.5 Initialize when triggered

• DP 1.2.5 Subsystem interface initializer

Manager

• FR 1.3.6 Input adapter configuration

• DP 1.3.6 Configuration reader

• FR 1.3.7 Manage/coordinate initialization se-
quence

• DP 1.3.7 Adapter Initializer

• FR 1.3.8 Sequence/coordinate fault recov-
ery/response

• DP 1.3.8 Fault Handler

• FR 1.3.9 Collect system state

• DP 1.3.9 Status Collector

Marshaller

• FR 1.4.10 Manage parallel data channels. As-
sign work to appropriate channel based on con-
figuration and the previous work handled

• DP 1.4.10 Data Dispatcher Channel Manager

• FR 1.4.11 Store message data while waiting
status from subsystem

• DP 1.4.11 Waiting-Response-Queue

• FR 1.4.12 Reject unknown transmission

• DP 1.4.12 Data Dispatcher Xmit Handler

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 166

• FR 1.4.13 Reject transmissions when triggered

• DP 1.4.13 Data Dispatcher Xmit Handler

GUI

• FR 2.2.14 GUI interface for legacy driver

• DP 2.2.14 GUI Legacy System Application

• FR 2.2.15 Display status of interface
states/configuration

• DP 2.2.15 GUI Application*

• FR 2.2.16 Perform diagnostics

• DP 2.2.16 GUI Application*

• FR 2.2.17 Authenticate GUI user

• DP 2.2.17 User Authentication

* These are defined further in the next section.

The Design Matrix shown in Table 7 represents
the new level 3 version after altering the position of
the rows and columns to get it into lower triangular
form. Note that for readability, the following table
has DPs as columns and FRs as rows and since the
third level number of the FRs and DPs is unique,
only the third level number is used. That is, DP
1.3.9 is listed as column 9 and FR 1.3.9 is listed as
row 9.

The tight coupling revealed in this iteration is
isolated to two respective parts of system, the Dis-
patcher and the GUI. The coupling in the Dis-
patcher’s functionality (FRs 10, 12, 13) is expected
and understandable since all data routing is done at
this point. These FRs may be collapsed into a single
FR. The breakout of the fault handling after the
first level of FRs/DPs enabled helps to determine
where that functionality is best served. The two
fault handling functions (FRs 12 and 13) may be
collapsed together.

The coupling with the GUI in FRs 15-16 is ex-
pected since all FRs are served from a single GUI.
Collapsing these FRs into one removes coupling in
the diagram, however the best solution is to modify
the two respective DPs to clarify which function is
for system status and which one is for diagnostic
access.

The Adapter Managers FRs (7, 8) that require con-
figuration and initialization are coupled with other
components. This coupling should not be intru-
sive to the overall design of the system. All level
3 FR/DP pairs define the scope of a design that
may now begin to transition to functional physical
components in a logical software design.

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 167

Figure 6: Major design component diagram.

3.5 Resulting Module Definition

Figure 6 represents major components that emerged
from the FR/DP and Design Matrix analysis. The
level 2 DPs drive the primary functional components
in the design. The level 3 DPs reveal more of the
functions within and the relationships between the
level 2 DPs. The configuration and initialization
requirements are mapped to three other components
as well as the Adaptor Manager as indicated by the
Management Function (MF) subcomponents in the
diagram.

3.5.1 Adapter Components

The association of major adapter components identi-
fied in Figure 6 may now be associated with more spe-
cific mature domains. This consists of using COTS
products, middleware, and software languages and
libraries as components of the adapter design.

• Management Function

o Java package

o XML (config file)

• Legacy Interface

o Java package

o TCP-IP

• Data Marshaller

o Java package (algorithms)

• Subsystem Interface

o Web Services

• Event Log

o Java Logging

• Legacy Driver

o Database to store data for test

• GUI Display

o Java Swing for GUIs

3.5.2 Adapter Simulations

Simulations may be used to examine the relation-
ships of components and begin to expose the design
to the requirements and ensure completeness. The
following scenarios are examined using collaboration
diagrams to analyze the components and look for
functionality completeness.

These scenarios were developed using the steps re-
quired for three threads of processing. These threads
represent some basic processing paths. The “au-
thentication” component was considered a missing
component and is highlighted for discussion later.
Figure‘7 shows the collaboration diagram of the
IASD initialization process.

All three collaboration diagrams (Figures 7-9)
highlight the newly added “Authentication” compo-
nent to show the relationship of the Authenticator
in the respective system processes.

3.5.3 Missing Components (Identification)

The components’ relationships are defined as pub-
lishers (P) and/or corresponding subscribers (S) in

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 168

Figure 7: Collaboration diagram (initialization).

Figure 8: Collaboration diagram (Legacy System Data Process).

Figure 6. The objects are shown as the ordered DPs from the final level design matrix shown in Table 8.

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 169

Figure 9: Collaboration diagram (Legacy Driver Guided Processing).

The “Emergent” column captures the DPs that do
not have a corresponding component to publish or
subscribe to.

At this point, the publish-subscribe condition is
broken and one emergent component is exposed. The
component needed is an authenticator to validate the
user access to the GUI. The missing Authenticator
component is added and so the publish-subscribe
conditions are satisfied.

3.5.4 Missing Components (Developed)

The missing component provides authentication of
users accessing the system via the GUI to operate
the legacy data driver and access diagnostic data.
The authentication component is attached to the
GUI since users will be required to have user ids and
passwords entered for authentication. The missing
component, “Authentication” is added to the compo-
nent diagram (Figure 6) and is shown in Figure 10.

The authentication component is integrated into
the system and the new functionality as shown in the

sequence diagram represented in Figure 11. Since
authentication involves validating user access and
provides different access rules for testing, adminis-
trative, and trouble shooting, it will provide various
levels of accessibility. These requirements can be
covered using Lightweight Directory Access Protocol
(LDAP). This protocol is a mature domain in itself
and can be implemented by many different COTS
products, typically web servers.

3.5.5 Integration

Integration includes the development of components
within the design. The UML diagrams show in Fig-
ure 12 and Figure 13 the integration of the java
classes that came from the design. These diagrams
represent a start to the primary classes, operations,
and attributes that will exist in the software sys-
tem. The integration of these classes to domains
like TCP/IP and Database are shown in the UML
diagrams.

At this point the test cases may be used to check

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 170

Figure 10: Major design component diagram (Missing Component Added).

out functionality through the integration process.
Low level unit tests may be developed to check out
component functionality and interfaces. The func-

tional requirements test cases validate overall system
functionality as the system is further integrated.

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 171

Figure 11: Sequence diagram with user Authentication.

Figure 12: UML diagram (Legacy and GUI).

3.5.6 Adding Components to Mature Domain

The missing authentication component that provides
system security is common to both software systems
operations and testing functions. The selection of

LDAP for this design is a potential component that
may be added to the list of mature domains originally
identified in Figure 4.

Figure 14 shows an update to Figure 4 (Mature
Domains) with security added to the mature domain

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 172

Figure 13: UML diagram (Dispatcher and Subsystem I/F).

components for the missing component, “Authenti-
cation”.

3.5.7 Software Product (Execution)

The system execution phase of an application such
as this Adapter begins when major component de-
velopment is complete and full system testing may
begin with the external interfaces. An application
of this type may be deployed when all functional
requirement test cases have passed test validation.
Customer acceptance should come upon approval of
all test results.

4 Axiomatic Design Concluding
Comments

The Component-Oriented Axiomatic Design process
provides a clear process to identifying design compo-
nents. This paper, Systematic Component-Oriented
Development with Axiomatic Design, [Togay, Dogru,
Tanik, Tate] presented the concept with the COAD
process of discovering missing components in the
design as seen by the missing user authentication
component in the Adapter design.

By utilizing the COAD process, perceived cus-
tomer confidence is heightened because the results
of the final design meet the customer needs. The
process brings a focus on the important functions
of a system and how multiple functions best relate
to each other. With the design process steps unique
to COAD, the designer may identify missing compo-
nents that are required to meet defined functional
needs without altering the design dramatically.

Bibliography
1. T. Kollman, G. Norby, 2001. Systems Engineering Prin-

ciples. Tom Kollman, Raytheon Systems Engineering,
Greg Norby, Raytheon Systems Engineering, (Presenta-
tion Slides for Texas Tech ENG 5000 class, December,
2001).

2. D. Tate, 2006. Fundamentals of Transdisciplinary Design
and Process. ATLAS Modul Publication, November 9-11,
2006,

3. Brown, 2006. Elements of Axiomatic Design, a simple
and practical approach to engineering design, Draft: 29
March 2006, Christopher A. Brown, Cazenovia, NY 2006.

4. Togay, Dogru, Tanik, Tate, 2006. Systematic
Component-Oriented Development with Axiomatic De-
sign,

5. Szyperski, Gruntz, Murer, 2005. Szyperski, C., Gruntz,

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)



Lonney J. Head
Legacy Interface Adapter Design Modeling 173

Figure 14: Revised mature domain with security.

D., Murer, S. (2005) Component Software Beyond
Object-Oriented Programming. Addison-Wesley, Read-
ing, MA.

6. A. Dogru, 2006. Component Oriented Software Engi-
neering. The ATLAS Publishing, Lubbock, TX.

7. Raytheon IMP− IMS, 2006. Raytheon Integrated Master
Plan and Schedule (IMP-IMS) Guide for Development
and Use, Revision 3.0, 30 April 2006

8. Fox, Kirsch, Head, 2006. Axiomatic Design Project

Submittal to Dr. D. Tate, December, 2006.

Mr. Lonney Head has BS from University of Col-

orado in Electrical Engineering, has MS from University

of Colorado in Engineering Management and MS from

Texas Tech University in Transdisciplinary Enginnering.

Currently he is Raytheon Project Engineer and PhDc

student at Texas Tech University, has twenty five years

of professional industry experience in program manage-

ment, systems engineering, manufacturing engineering,

hardware and software development, integration, and test-

ing. Lonneys expertise includes certifications in Program

Management, Six Sigma and Earned Value Management.

Throughout his career, Lonney has successfully executed

technical programs with multiple United States and for-

eign governments to include US Air Force, US Navy,

NASA, United Kingdom, Kingdom of Saudi Arabia and

the Hashemite Kingdom of Jordan.

Copyright c© 2015 by the author. This is
an open access article distributed under
the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and
reproduction in any medium, provided the original
work is properly cited.

Legacy Interface Adapter Design Modeling
ISSN: 1949-0569 online

Vol. 5, pp. 157-173, (December, 2015)


